首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
介绍了质子治疗加速器输运部二极磁铁电流源的技术要求、主电路拓扑。该电源要求输出电流精度为25ppm,纹波小于25ppm。电源输出电流纹波由低频纹波和高频纹波组成。对电源输出电流纹波的形成机理进行了详细的理论分析和数学计算。得出了基于冲量控制原理的脉冲宽度调制(PWM)电流跟踪控制技术可以有效消除输入低频纹波对输出电流的影响。同时也对输出电流高频纹波采用两种方法进行了定量的数学分析,并得出量化的结论和计算公式。借助AnsoftSimplorer电路仿真软件构建模型,验证了纹波规律结论及计算公式的准确性,并且提出了相应的纹波抑制策略。  相似文献   

2.
介绍了质子治疗加速器输运部二极磁铁电流源的技术要求、主电路拓扑。该电源要求输出电流精度为25ppm,纹波小于25ppm。电源输出电流纹波由低频纹波和高频纹波组成。对电源输出电流纹波的形成机理进行了详细的理论分析和数学计算。得出了基于冲量控制原理的脉冲宽度调制(PWM)电流跟踪控制技术可以有效消除输入低频纹波对输出电流的影响。同时也对输出电流高频纹波采用两种方法进行了定量的数学分析,并得出量化的结论和计算公式。借助Ansoft Simplorer电路仿真软件构建模型,验证了纹波规律结论及计算公式的准确性,并且提出了相应的纹波抑制策略。  相似文献   

3.
加速器系统中由于大量非线性器件的存在产生了大量纹波,严重影响加速器磁场对粒子运动轨迹的控制。为实现对加速器直流电源纹波的抑制,相关研究主要集中在用电压型有源电力滤波器降低直流电源纹波,但该方法存在抑制精度不足、响应延时、开关设备损耗较大等问题。针对以上问题,本文比较了电流型和电压型有源电力滤波器的主电路拓扑结构,研究了电流型和电压型有源电力滤波器的脉冲宽度调制技术和控制策略,分析了在加速器系统中不同的有源电力滤波器对磁铁电源输出电流纹波的抑制性能。通过仿真分析与实验验证,发现电流型有源电力滤波器对磁铁电源输出电流纹波具有显著的抑制效果,并且电流型有源电力滤波器能够直接控制输出的纹波电流,纹波精度抑制更高,CSAPF投入后,负载电流纹波显著减小,电流纹波系数达到1.6×10–5。  相似文献   

4.
重离子加速器电源系统对励磁电源输出电流的稳定度和纹波精度要求高。磁铁负载的存在产生的纹波,会对加速器通过磁场精确控制粒子运动轨迹带来影响。针对以上问题,提出一种基于SSOGI-RLSMC新型联合算法,以减小磁铁负载影响下励磁电源输出的电流纹波,提高电流稳定度。新型联合算法通过并联型二阶广义积分器(SSOGI)作为纹波检测器对纹波分量进行快速准确的提取,获得精度较高的指令电流;将指令电流和直流有源电力滤波器的补偿电流相减得到误差信号,利用趋近律滑模控制(RLSMC)算法对误差信号进行动态跟踪和补偿,以提高直流有源滤波器对励磁电源输出电流的纹波抑制能力,进而达到对粒子运动轨迹精确控制的目的。最后通过Matlab/Simulink仿真证明,所提的新型联合算法在以直流有源电力滤波器为主补偿手段的励磁电源中有效提高了励磁电源输出电流的精度和稳定度,改善了直流有源滤波器对纹波电流的抑制能力。  相似文献   

5.
用于原子氧地面模拟设备精密压控恒流源   总被引:1,自引:0,他引:1       下载免费PDF全文
针对原子氧地面模拟设备需要通过电流源形成磁镜效应对其发射度进行约束,以及用于原子氧参数测试仪器校准,研制了一款基于运算放大器的精密压控恒流源。为了防止恒流源的供电电源纹波对电路性能的影响,又配套研制一款开关电源滤波器。最后测试表明:开关电源滤波器能有效减少电源噪声,+15V电源的纹波系数降到万分之一,恒流源输出电流10pA~1A,精度500fA,其稳定和负载稳定性优异。  相似文献   

6.
赵娟  曹宁翔  黄斌  李波  张信  黄宇鹏  李洪涛 《强激光与粒子束》2019,31(4):040015-1-040015-5
大功率恒流源是强流直线感应加速器(LIA)的关键设备之一,用于为加速器电感线圈提供大功率准直流驱动电流,其稳定度、纹波系数等指标要求极高。神龙-Ⅲ LIA恒流源采用串联线性双闭环回路双参量电流调控技术,同时综合应用了以PLC控制器为核心的本地控制、以ARM控制器和工控机为核心的远程控制以及以太网网络通讯技术,实现了强电磁干扰环境下远程控制高稳定性运行。该恒流源在负载0.5~0.6 Ω之间变化、输出电流在50~170 A之间变化时调整管压降控制在8 V±2 V范围内,输出电流纹波和电流稳定度均优于0.5‰。  相似文献   

7.
杨晓光  史冉冉  高思佳  赵硕 《强激光与粒子束》2018,30(9):095007-1-095007-8
提出了一种高压电源谐振升压倍压电路,该电路由LC谐振电路与整流电路组成。对该电路的工作模式和稳态输出特性进行了分析;建立了该电路的数学模型:以归一化的形式定量描述了稳态输出电压与电流的增益、短路特性和开路特性、输出纹波与电压降、以及器件上的电应力,并分析了电路品质因数、归一化频率和电容比对输出特性的影响;对该电路进行了仿真与实验研究,仿真结果与实验结果具有很好的一致性,验证了数学模型的正确性。与C-W电路的对比研究结果表明:所提出的电路具有输出电压稳定、输出纹波小、短路特性好以及响应速度快的优点,满足高压小电流的应用需求。  相似文献   

8.
欧恒恒  燕宏斌  张帅  周宁  赵鑫  原振栋  吴凤军 《强激光与粒子束》2022,34(6):064003-1-064003-6
为满足分离扇回旋加速器(SSC)对于磁场精度的需求,需对其主场电源进行改造。提出开关电源与线性电源相结合的方式作为SSC主场电源的改造方案。电源总体分为两部分,采用模块化的开关电源作为前级电压源,三极管线性调整电路作为后级模块的主电路,充分利用两种电源的优势,实现高稳定度、低纹波的电流输出,同时大幅度提升电源的功率密度和可靠性。文章介绍了电源的工作原理及改造过程,详细阐述了三极管线性放大原理以及管压降控制电路、输出电流控制电路的设计与实现,通过仿真对电路进行功能验证,最终在电源样机上进行实验测试。测试结果表明:改造后主场电源输出电流稳定度达到了±3.99×10?6,电流纹波达到了2.7×10?9,各项性能均优于改造前。  相似文献   

9.
针对传统三相三电平逆变器在较小占空比模式下输出电压纹波较大的不足,提出了一种新的双重控制策略。该策略通过控制直流母线电压大小与逆变器的占空比,从而实现对输出直流电压较大范围内的可控调整。建立200 kV/15 A的逆变型直流高压电源MATLAB/Simulink系统仿真模型,采用上述控制策略,实现了输出电压分别为200 kV和20 kV时,纹波均小于±1%,验证了新型控制策略在输出电压宽范围情况下,输出电压纹波能够满足负载要求。  相似文献   

10.
电子加速器通过对电磁场精细调整使得电子束按理想轨道运行,要求励磁电源电流精度高、稳定度高、纹波小、抗干扰能力强。介绍了合肥光源小功率直流磁铁电源系统结构和控制器系统及控制算法,并进行了仿真和实验研究。实验测得,在负载电感1 mH、等效串联电阻0.049 ,输出电流25 A下电流纹波率2.12,40 min电流稳定度6.6,电流分辨率0.01。这表明:所设计的主电路和控制器系统适用于小功率直流磁铁电源的实验研究。  相似文献   

11.
研究了一种基于矩形腔式功率合成的射频高功率合成器。该合成器可以实现功放模块与合成器的直接耦合,合成效率高,功率容量大,且功率容量可调,可以很好地满足目前CiADS中对固态发射机功率容量的梯度要求。12合1矩形腔式功率合成器仿真结果表明,合成器各输入端到输出端的幅度传输和相位传输具有很好的一致性,最大偏差分别在0.05 dB和0.5°以内,调节功放模块数量可以调节发射机的功率容量。  相似文献   

12.
设计了一种用于S波段、工作带宽10%的相对论速调管放大器结构。该宽带管采用多间隙输入腔、两个中间腔和重叠模双间隙输出腔来拓展相对论速调管放大器(RKA)群聚段和输出段的带宽, 模拟得到基波调制深度大于80%时, RKA群聚段和输出段的带宽分别为11%和15%。整管模拟时, 通过调节注入微波频率和功率, 得到最大功率1.58 GW、3 dB相对工作带宽10%、带内微波功率不小于1 GW的输出微波。  相似文献   

13.
光纤耦合半导体激光器(LD)泵浦的光纤激光放大器具有体积小、功质比高、稳定性好等优点,在工业加工和军事国防等诸多领域都有着广泛且重要的应用。然而,受限于器件制作工艺水平及光纤中的受激拉曼效应和模式不稳定效应,LD泵浦的光纤激光放大器难以同时实现高功率及高亮度激光输出。为实现更高功率、更高亮度的光纤激光输出,需要结合现有的器件工艺水平并同时实现对放大器中的受激拉曼散射效应和模式不稳定效应的有效抑制。报道了基于单位自研大模场增益光纤成功实现13 kW功率、高光束质量激光输出。激光器采用主振荡功率放大结构,放大级采用单后向981 nm泵浦自研大模场增益光纤,在总泵浦功率为15 kW时,输出功率达到12.94 kW,光束质量M2因子约为2.85。通过进一步优化器件性能及光纤模式控制,有望实现更高功率、更高亮度的光纤激光输出。  相似文献   

14.
同带抽运高效率光纤放大器   总被引:1,自引:0,他引:1       下载免费PDF全文
肖虎  冷进勇  吴武明  王小林  马阎星  周朴  许晓军  赵国民 《物理学报》2011,60(12):124207-124207
以光纤光栅为谐振腔搭建了波长为1020 nm的光纤激光器,并通过两级级联放大获得了590 mW的最大输出功率. 利用获得的波长为1020 nm的激光进行了波长为1064 nm种子光同带抽运放大,实验研究了不同增益光纤长度时放大器的输出功率和转换效率. 当增益光纤长度为8.5 m时,放大器最大输出功率为385 mW,斜率效率为81%. 进行了波长为976 nm的半导体激光器直接抽运波长为1064 nm种子光的实验. 在增益光纤长度最优时,其斜率效率为56.4%. 实验结果表明,同带抽运方式比传统抽运方式具有更高的转换效率. 研究结果可为波长为1020 nm的激光高功率放大和波长为1064 nm的光纤激光高功率同带抽运放大提供一定的参考. 关键词: 同带抽运 光纤放大器 斜率效率  相似文献   

15.
In this paper a novel low power online chromatic dispersion (CD) monitoring method is presented, which employs spectral shift in the semiconductor optical amplifier (SOA). The advantage of this method lies in that the required input power can be much reduced, and the filter output can be used in the dynamic CD compensation system. The simulation indicates that the filtered power decreases with CD increases, and that the monitoring range increases as the filter bandwidth increases.  相似文献   

16.
王岩山  王珏  常哲  彭万敬  孙殷宏  马毅  高清松  张凯  唐淳 《强激光与粒子束》2020,32(1):011006-1-011006-3
基于简单的主振荡功率放大结构,演示了一种高功率窄线宽线性偏振全光纤激光器,其最大输出功率为3.08 kW,3 dB线宽为0.2 nm。在整个功率缩放过程中,偏振消光比约为94%,光束质量M 2约为1.4。这是国内外首次实现3 kW全保偏光纤激光输出,与基于相位调制的窄线宽激光器相比,该激光器可实现近似的线宽,同时具有受激布里渊散射阈值高、系统结构简单、成本低等特点。  相似文献   

17.
基于单片机的LD控制系统的设计   总被引:1,自引:0,他引:1  
刘泊  曹瑞明 《应用光学》2008,29(2):203-206
为了实现激光器稳定、可靠和准确的功率输出,介绍一种基于单片机实现半导体激光器功率高稳定的控制系统。该系统以MSP430单片机为核心,根据半导体激光器的工作原理,设计了受控恒流源、温度控制系统和光功率反馈系统等部分。此外,系统还具有激光功率的实时控制、显示和设置以及软开关和软保护等功能。功率稳定采用光功率反馈法,温度控制采用高精度PWM驱动的半导体制冷器。光功率稳定度优于0.25%。  相似文献   

18.
非制冷红外探测器读出电路的非均匀性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
袁红辉  陈永平 《物理学报》2015,64(11):118503-118503
对于长线列的非制冷红外探测器组件, 不同探测元之间的非均匀性是衡量电路设计的关键指标. 为了实现长线列非制冷红外探测器的高性能读出, 本文设计了一种基于电流镜方式的非制冷红外探测器160线列读出电路, 电路由电流镜输入模块、电容负反馈互导放大器模块及相关双采样输出模块组成. 电路采用0.5 μm工艺制作完成. 通过合理设置电路中MOS管的参数和布局电流镜版图, 电路的非均匀性有了明显地改善. 通过测试, 电路的非均匀性小于1%, 器件总功耗约为100 mW, 并具有良好的低噪声特性, 输出噪声小于1 mV, 输出摆幅大于2 V. 该电路与160线列非制冷红外探测器互连后, 能较好地完成红外信号的读出, 在积分时间为20 μups的情况下, 器件的响应为0.294 mV/Ω, 整体性能良好. 该电路的研制对超长线列的非制冷红外冷探测器读出电路研制奠定了重要的技术基础.  相似文献   

19.
基于0.13 m SiGe BiCMOS工艺, 研究和设计了一种D波段功率放大器芯片。该放大器芯片用了四个功率放大器单元和两个T型结网络构成。功率放大器单元采用了三级的cascode电路结构。低损耗的片上T型结网络既能起到片上功率合成/分配的功能, 又能对输入输出进行阻抗匹配。对电路结构进行了设计、流片验证和测试。采用微组装工艺将该芯片封装成为波导模块。小信号测试结果表明:该功放芯片工作频率为125~150 GHz, 最高增益在131 GHz为21 dB, 最低增益在150 GHz为17 dB, 通带内S22小于-7 dB, S11小于-10 dB。大信号测试结果表明:该功放模块在128~146 GHz带内输出功率都大于13 dBm, 在139 GHz时, 具有最高输出功率为13.6 dBm, 且1 dB压缩功率为12.9 dBm。  相似文献   

20.
Synchronous vibration can be caused by rotor imbalance in high-speed rotors of momentum exchange devices, and the imbalance vibration is the main disturbance for attitude control of spacecrafts. Active magnetic bearing (AMB) is widely used in momentum exchange devices due to its active vibration control ability. To suppress the imbalance vibration completely, an adaptive control approach based on the AMB is proposed. First, dynamics of the AMB rotor with both static imbalance and dynamic imbalance are introduced, and the model of power amplifier is particularly analyzed. Large temperature change range and overpowering cosmic ray will induce considerable errors and variations in parameters of the power amplifier, which has to work in space for about ten years. Therefore, adaptive compensation should be made for these errors and variations. Conditions, on which the imbalance vibration can be completely suppressed, are analyzed, and the results show that these conditions can be satisfied with notch filters and feedforward compensations (FFCs). However, the FFC contains an inverse function of the power amplifier, whose errors and variations can result in gain and phase differences and changes between the output voltage of the controller and the actual output current of the power amplifier. Consequently, the FFC becomes inaccurate, and residual vibration occurs. Finally, a gain phase modifier (GPM) is proposed to form two closed loops to tune the gain and phase of the FFC adaptively and precisely. The effectiveness of the proposed approach has been demonstrated by simulations and experiments. Compared with the existing methods, this method can achieve adaptive complete suppression of the imbalance vibration unaffected by the errors and variations of the power amplifier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号