首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
微射流冲击作为一种高热流冷却技术,在大功率激光器、微电子芯片等微型高热流器件冷却方面有广阔应用前景.本文对微射流阵列冲击恒热流表面的换热情况进行数值模拟,详细分析了微射流阵列的换热特点,对比了射流孔顺排和叉排方式的冷却性能,得出射流入口雷诺数、射流孔间距、射流高度等因素对冷却特性的影响规律.  相似文献   

2.
本文实验研究了镜面抛光铜表面和两组不同高度镍纳米锥表面的喷雾冷却换热特性。接触角的实验与分析发现,纳米锥表面的接触角远小于抛光铜表面,且纳米锥高度越高,接触角越小。三组表面在喷雾冷却单相换热区换热性能相近,抛光铜表面换热性能略优。纳米锥表面在喷雾冷却两相换热区展现出更强的换热性能,且纳米锥高度越高,接触角越小,换热性能越好,CHF越高。  相似文献   

3.
换热器是新风系统的核心部件,以某品牌新风换热器为模型,对该换热器进行数值模型,分析换热过程中换热和流动特性,以及流速、流道高度对换热性能的影响。建立不同流道高度时新风侧温差、压差、努塞尔数、阻力系数、综合传热性能因子随速度的变化关系。发现在换热器内存在"换热死区",随速度增加"换热死区"范围增大,在流速0.5m/s~1.6m/s、流道高度3mm~5mm范围内,增加流速可提高换热能力、减小阻力系数,但压降同样增加;相同速度时,提高流道高度不仅提高了换热性能,还减小了压降。  相似文献   

4.
《工程热物理学报》2021,42(10):2559-2565
为揭示静电喷雾冷却过程传热强化机制,设计搭建了静电喷雾冷却传热实验台,对比研究了滴状、微滴、锥射流及多股射流模式下的喷雾粒径、喷雾速度等雾化特性,分析了雾化模式及工质流量对冷却换热性能的影响规律。研究结果表明,随着电压逐渐增加,喷雾粒径不断减小、喷雾速度不断增大,且电场力逐渐主导液体破碎及喷雾液滴撞击换热面过程;此外,随着雾化模式由滴状/微滴转变为锥射流/多股射流时,电场力可有效促进单相换热区的喷雾液滴铺展以及抑制过热状态下的液滴反弹,使核态沸腾阶段向更高表面温度方向延伸,喷雾冷却换热能力显著提升。  相似文献   

5.
高温壁面液体射流冲击瞬态沸腾传热的实验研究   总被引:6,自引:1,他引:5  
以水作为冷却介质,对高温壁面在射流冲击淬冷时的瞬态换热特性进行了实验研究,获得了介质在不同过冷度、不同射流速度下的完整沸腾曲线。实验结果表明。无论是增大工质过冷度还是提高射流速度,总会使得热壁面的冷却速率加大。在一定的过冷度和射流速度下壁温变化呈现快-慢-快的特点。临界热流密度随平均壁温变化率的增大而增大,二者之间存在线性关系.  相似文献   

6.
本文运用数值计算的方法对具有初始横流的阵列射流在不同的排列方式、冲击间距和横流/射流质量流量比下 的流动换热进行了三维数值研究,并采用热色液晶测试技术对阵列射流冲击的冷却表面温度分布进行了试验研究。获得了 每一股射流的冲击冷却局部对流换热系数分布的特征,研究结果表明本文的计算结果与实验特征是基本吻合的。  相似文献   

7.
针对聚光光伏(CPV) 电池高热流密度散热问题, 本文提出了射流冲击与分形微通道散热相结合的解决方案, 对其流动和换热进行了模拟. 首先对分形微通道的分形级数进行分析, 四级相比三级分形微通道换热系数只增加了4.62% , 压降却升高了54.37% ; 接着对管道截面形状进行优化, 对圆形截面, 方形渐缩截面和扁管截面内流体的流动进行了模拟, 结果表明在换热量相近的情况下, 扁管拥有最低的压降; 随后对比分叉处倒圆角、 倒角和 Y形三种布置形状, 结果表明 Y 形布置有效地减少了内部流体的涡旋区, 能够在牺牲较少的换热面积的条件下, 将压降降低85 .51 % . 最后在相同水力直径条件下研究单个喷嘴、 均匀喷嘴阵列、 非均匀喷嘴阵列射流冲击分形微通道的换热性能, 模拟结果表明, 非均匀喷嘴阵列分形微通道拥有最佳的换热性能, 且压降降低了25 .99 % .  相似文献   

8.
采用数值计算方法模拟磨削工件表面的射流冲击对流换热过程,对不同射流冲击速度,考虑旋转盘诱导的气旋卷吸和射流冲击的耦合作用下,研究分析加热壁面的对流换热效果。在转盘诱导的气旋流动影响下,冲击射流向转盘和加热表面之间区域的侵入能力受到抑制,而射流速度的提高能够加强射流冲击的穿透力;在旋转盘诱导的气旋运动和卷吸作用下,空气射流冲击能有效改善磨削弧区的对流换热,且随着射流速度的增加,其强化对流换热的效果更显著。  相似文献   

9.
《工程热物理学报》2021,42(8):2141-2149
引射火箭能够为火箭基组合循环(RBCC)发动机提供大推力,但是其喉部面临着极高的热载荷。本文提出使用冲击冷却的方式对引射火箭进行局部热防护,建立了射流冲击冷却的三维数值模型,研究了喉部曲率半径和冲击孔数量对冷却性能的影响,结果表明在设计半径R=(1~2)R_t范围内,R的取值对射流冲击换热无明显影响;靶面平均对流换热系数随冲击孔数量n的增大而减小,分布均匀程度随n先增大后减小,冲击孔数量n=6时换热效率最高。  相似文献   

10.
多排圆射流的冲击冷却实验研究   总被引:3,自引:0,他引:3  
本文研究多排圆射流的冲击换热特性,以便模拟透平叶型前缘的冲击冷却,它是在单排圆射流研究的基础上进行的。文中分析了射流流态、冲击管的几何参数以及冲击管与凹面的间距等对平均换热系数的影响,特别对射流之间的弦向间距作了初步探讨。最后,整理成无因次准则关系式来表达整个实验结果。  相似文献   

11.
小通道扁管内纳米流体流动与传热特性   总被引:2,自引:0,他引:2  
建立了测量小通道扁管内纳米流体流动与对流换热性能的实验系统,测量了不同粒子体积份额的水-Cu纳米 流体的管内对流换热系数和摩擦阻力系数,实验结果表明,在相同雷诺数条件下,小通道扁管内纳米流体的对流换热系数 大于纯液体,且随粒子的体积份额的增加而增大,而纳米流体的阻力系数并未明显增大。  相似文献   

12.
纳米流体对流换热的实验研究   总被引:15,自引:3,他引:12  
建立了测量纳米流体对流换热系数的实验系统,测量了不同粒子体积份额的水-Cu纳米流体在层流与湍流状态下的管内对流换热系数,实验结果表明,在液体中添加纳米粒子增大了液体的管内对流换热系数,粒子的体积份额是影响纳米流体对流换热系数的因素之一。综合考虑影响纳米流体对流换热的多种因素,提出了计算纳米流体对流换热系数的关联式。  相似文献   

13.
Presence of external electrical field plays a vital role in heat transfer and fluid flow phenomena. Keeping this in view present article is a numerical investigation of stagnation point flow of water based nanoparticles suspended fluid under the influence of induced magnetic field. A detailed comparative analysis has been performed by considering Copper and Titanium dioxide nanoparticles. Utilization of similarity analysis leads to a simplified system of coupled nonlinear differential equations, which has been tackled numerically by means of shooting technique followed by Runge-Kutta of order 5. The solutions are computed correct up to 6 decimal places. Influence of pertinent parameters is examined for fluid flow, induced magnetic field, and temperature profile. One of the key findings includes that magnetic parameter plays a vital role in directing fluid flow and lowering temperature profile. Moreover, it is concluded that Cu-water based nanofluid high thermal conductivity contributes in enhancing heat transfer efficiently.  相似文献   

14.
Presence of external electrical field plays a vital role in heat transfer and fluid flow phenomena. Keeping this in view present article is a numerical investigation of stagnation point flow of water based nanoparticles suspended fluid under the influence of induced magnetic field. A detailed comparative analysis has been performed by considering Copper and Titanium dioxide nanoparticles. Utilization of similarity analysis leads to a simplified system of coupled nonlinear differential equations, which has been tackled numerically by means of shooting technique followed by Runge-Kutta of order 5. The solutions are computed correct up to 6 decimal places. Influence of pertinent parameters is examined for fluid flow, induced magnetic field, and temperature profile. One of the key findings includes that magnetic parameter plays a vital role in directing fluid flow and lowering temperature profile. Moreover, it is concluded that Cu-water based nanofluid high thermal conductivity contributes in enhancing heat transfer efficiently.  相似文献   

15.
ZrO2纳米流体的对流换热系数测定及机理浅析   总被引:3,自引:0,他引:3  
建立了测量圆管内纳米流体流动与传热性能的实验系统,测量了不同粒子浓度的ZrO2/水纳米流体在雷诺数为3 000~18 000范围内的管内对流换热系数以及不同位置处纳米流体对流换热系数的变化情况.实验结果显示,在液体中添加纳米粒子显著增大了液体的管内对流换热系数,例如,在相同雷诺数时,与纯水相比,如果纳米粒子的质量浓度从1.6%增大到4.1%,则纳米流体的对流换热系数增加的比例从1.09增大到1.2.此外,从颗粒的浓度、粒径两方面分析纳米流体强化传热的机理.  相似文献   

16.
In this work, the flow boiling of TiO2/water and Al2O3/water nanofluids was investigated experimentally and simulated with two phases. Experimental results were obtained in two directions and compared together. The volume fraction and heat transfer coefficient obtained from the vertical tube were compared with those obtained from the horizontal tube. The results showed that the contours of vapor volume fraction in horizontal tube are completely different from the vertical tube, which is due to the buoyancy effect. Moreover, the effect of nanoparticles on both flow directions was almost the same, while heat transfer coefficient was not the same in these flow directions. Based on the experimental result, presence of nanoparticles in the base fluid cannot increase the heat transfer coefficient.  相似文献   

17.
18.
In this investigation, laminar flow heat transfer enhancement in circular tube utilizing different nanofluids including Al2O3 (20 nm), CuO (50 nm), and Cu (25 nm) nanoparticles in water was studied. Constant wall temperature was used as thermal boundary condition. The results indicate enhancement of heat transfer with increasing nanoparticle concentrations, but an optimum concentration for each nanofluid suspension can be found. Based on the experimental results, metallic nanoparticles show better enhancement of heat transfer coefficient in comparison with oxide particles. The promotions of heat transfer due to utilizing nanoparticles are higher than the theoretical correlation prediction.  相似文献   

19.
Aiming at the dispersion stability of nanopartieles regarded as the guide of heat transfer enhancement, we investigate the viscosity and the thermal conductivity of Cu and Al2O3 nanoparticles in water under different pH values. The results show that there exists an optimal pH value for the lowest viscosity and the highest thermal conductivity, and that at the optimal pH value the nanofluids containing a small amount of nanoparticles have noticeably higher thermal conductivity than that of the base fluid without nanoparticles. For the two nanofluids the enhancements of thermal conductivity are observed up to 13% (Al2O3-water) or 15% (Cu-water) at 0.4 wt%, respectively. Therefore, adjusting the pH values is suggested to improve the stability and the thermal conductivity for practical applications of nanofluid.  相似文献   

20.
The effects of a heat sink and the source size and location on the entropy generation, MHD natural convection flow and heat transfer in an inclined porous enclosure filled with a Cu-water nanofluid are investigated numerically. A uniform heat source is located in a part of the bottom wall, and a part of the upper wall of the enclosure is maintained at a cooled temperature, while the remaining parts of these two walls are thermally insulated. Both the left and right walls of the enclosure are considered to be adiabatic. The thermal conductivity and the dynamic viscosity of the nanofluid are represented by different verified experimental correlations that are suitable for each type of nanoparticle. The finite difference methodology is used to solve the dimensionless partial differential equations governing the problem. A comparison with previously published works is performed, and the results show a very good agreement. The results indicate that the Nusselt number decreases via increasing the nanofluid volume fraction as well as the Hartmann number. The best location and size of the heat sink and the heat source considering the thermal performance criteria and magnetic effects are found to be D?=?0.7 and B?=?0.2. The entropy generation, thermal performance criteria and the natural heat transfer of the nanofluid for different sizes and locations of the heat sink and source and for various volume fractions of nanoparticles are also investigated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号