首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A new approach for characterizing high intensity focused ultrasound (HIFU) transducers is presented. The technique is based upon the acoustic streaming field generated by absorption of the HIFU beam in a liquid medium. The streaming field is quantified using digital particle image velocimetry, and a numerical algorithm is employed to compute the acoustic intensity field giving rise to the observed streaming field. The method as presented here is applicable to moderate intensity regimes, above the intensities which may be damaging to conventional hydrophones, but below the levels where nonlinear propagation effects are appreciable. Intensity fields and acoustic powers predicted using the streaming method were found to agree within 10% with measurements obtained using hydrophones and radiation force balances. Besides acoustic intensity fields, the streaming technique may be used to determine other important HIFU parameters, such as beam tilt angle or absorption of the propagation medium.  相似文献   

2.
传统的高强度聚焦超声(HIFU)治疗中实际焦点和预设焦点容易出现偏移,为考察时间反转方法对HIFU治疗中焦点偏移的补偿效果,采用时域有限差分方法求解Westervelt方程,建立高强度聚焦声场数值模型。数值计算得到在人体软组织中进行HIFU治疗时,采用时间反转方法后焦点偏移距离最大仅为1.6 mm。脂肪层厚度及声源强度改变对时间反转聚焦精度影响不大,F数(焦点距离同换能器孔径的比值)降低时,焦点偏移减小。研究表明在人体软组织吸收系数和非线性系数范围内,时间反转方法可有效补偿焦点偏移,达到更好的聚焦效果。   相似文献   

3.
基于经典的瑞利积分,提出考虑非线性传播、各次谐波衰减的声场瑞利积分线性叠加算法.分析其原理,并以凹球面聚焦换能器为例,采用该算法研究媒质衰减和非线性传播特性影响声焦域的规律.并与Khokhov-Zabolotskaya-Kuznesov(KZK)数值算法,以及实验结果进行比较,验证瑞利积分线性叠加算法描述高强度聚焦超声(HIFU)声场的有效性.  相似文献   

4.
The relationship between the cavitation and acoustic peak negative pressure in the high-intensity focused ultrasound(HIFU)Held is analyzed in water and tissue phantom.The peak negative pressure at the focus is determined by a hybrid approach combining the measurement with the simulation.The spheroidal beam equation is utilized to describe the nonlinear acoustic propagation.The waveform at the focus is measured by a fiber optic probe hydrophone in water.The relationship between the source pressure amplitude and the excitation voltage is determined by fitting the measured ratio of the second harmonic to the fundamental component at the focus,based on the model simulation.Then the focal negative pressure is calculated for arbitrary voltage excitation in water and tissue phantom.A portable B-mode ultrasound scanner is applied to monitor HIFU-induced cavitation in real time,and a passive cavitation detection(PCD)system is used to acquire the bubble scattering signals in the HIFU focal volume for the cavitation quantification.The results show that:(1)unstable cavitation starts to appear in degassed water when the peak negative pressure of HIFU signals reaches 13.5 MPa;and(2)the cavitation activity can be detected in tissue phantom by B-mode images and in the PCD system with HIFU peak negative pressures of 9.0 MPa and 7.8 MPa,respectively,which suggests that real-time B-mode images could be used to monitor the cavitation activity in two dimensions,while PCD systems are more sensitive to detect scattering and emission signals from cavitation bubbles.  相似文献   

5.
许阳  郭霞生  章东 《声学学报》2013,38(4):440-444
相控阵在聚焦超声治疗应用中不可避免地受到非线性影响,提出了采用高斯叠代法计算相控阵的非线性声场。在该方法中,利用预设焦点参数并应用伪逆矩阵算法得到阵元的激励参数;然后将阵元近似拟合成一组高斯声束的叠加,通过高斯声束叠代计算非线性声场。数值计算中以64阵元一维相控阵为研究对象;线性条件下,高斯叠代法结果与菲涅耳积分结果的误差低于0.5%,验证了该方法的可行性;单焦点及双焦点模式的相控阵非线性声场结果表明非线性效应能提高焦点聚焦性能,并且非线性效应与激励声压及激励频率成正比。   相似文献   

6.
7.
Liu X  Li J  Gong X  Zhang D 《Ultrasonics》2006,44(Z1):e27-e30
In recent years the propagation of the high intensity focused ultrasound (HIFU) in biological tissue is an interesting area due to its potential applications in non-invasive treatment of disease. The base principle of these applications is the heat effect generated by ultrasound absorption. In order to control therapeutic efficiency, it is important to evaluate the heat generation in biological tissue irradiated by ultrasound. In his paper, based on the Khokhlov-Zabolotkaya-Kuznetsov (KZK) equation in frequency-domain, the numerical simulations of nonlinear absorption in biological tissues for high intensity focused ultrasound are performed. We find that ultrasound thermal transfer effect will be enhanced with the increasing of initial acoustic intensity due to the high harmonic generation. The concept of extra absorption factor is introduced to describe nonlinear absorption in biological tissue for HIFU. The theoretical results show that the heat deposition induced by the nonlinear theory can be nearly two times as large as that predicated by linear theory. Then, the influence of the diffraction effect on the position of the focus in HIFU is investigated. It is shown that the sound focus moves toward the transducer compared with the geometry focus because of the diffraction of the sound wave. The position of the maximum heat deposition is shifted to the geometry focus with the increase of initial acoustic intensity because the high harmonics are less diffraction. Finally, the temperature in the porcine fat tissue changing with the time is predicated by Pennes' equation and the experimental results verify the nonlinear theoretical prediction.  相似文献   

8.
徐慧  陈思  幸柏成  单天琪  赵渊 《应用声学》2024,43(1):178-189
为探究临床常用的7 MHz高频聚焦超声在多层生物组织中的声传播以及毫秒级时间内的生物传热规律问题,基于Westervelt方程和Pennes传热方程,使用有限元方法建立高频聚焦超声辐照多层组织的非线性热黏性声传播及传热模型。首先分析了线性模型和非线性模型之间的差异,然后在非线性模型下探究换能器的参数对声场和温度场的影响。仿真结果显示:在7 MHz频率下,当换能器输出声功率超过5 W时,声波传播的非线性效应不可忽视(p <0.05);当声功率从5 W增大到15 W时,非线性模型与线性模型预测的温度偏差从20%增加到34.703%;高频聚焦超声波的非线性行为比低频更加显著,基频能量向高次谐波转移的程度增大,声功率为10 W和15 W时4次谐波与基波之比分别达到7.33%和12.12%;高频换能器参数的改变对组织中声场和温度场分布的影响较大,换能器焦距从12 mm减小到11.2 mm,焦点处最高温度增加了77%。结果表明,7 MHz聚焦超声的非线性声传播需要考虑到4次谐波的影响。该文提出的多层组织非线性仿真模型可为高频聚焦超声换能器参数优化及制定安全、有效的术前治疗方案提供理论参考。  相似文献   

9.
Boiling histotripsy is a promising High-Intensity Focused Ultrasound (HIFU) technique that can be used to induce mechanical tissue fractionation at the HIFU focus via cavitation. Two different types of cavitation produced during boiling histotripsy exposure can contribute towards mechanical tissue destruction: (1) a boiling vapour bubble at the HIFU focus and (2) cavitation clouds in between the boiling bubble and the HIFU source. Control of the extent and degree of mechanical damage produced by boiling histotripsy is necessary when treating a solid tumour adjacent to normal tissue or major blood vessels. This is, however, difficult to achieve with boiling histotripsy due to the stochastic formation of the shock scattering-induced inertial cavitation clouds. In the present study, a new histotripsy method termed pressure-modulated shockwave histotripsy is proposed as an alternative to or in addition to boiling histotripsy without inducing the shock scattering effect. The proposed concept is (a) to generate a boiling vapour bubble via localised shockwave heating and (b) subsequently control its extent and lifetime through manipulating peak pressure magnitudes and a HIFU pulse length. To demonstrate the feasibility of the proposed method, bubble dynamics induced at the HIFU focus in an optically transparent liver tissue phantom were investigated using a high speed camera and a passive cavitation detection systems under a single 10, 50 or 100 ms-long 2, 3.5 or 5 MHz pressure-modulated HIFU pulse with varying peak positive and negative pressure amplitudes from 5 to 89 MPa and −3.7 to −14.6 MPa at the focus. Furthermore, a numerical simulation of 2D nonlinear wave propagation with the presence of a boiling bubble at the focus of a HIFU field was conducted by numerically solving the generalised Westervelt equation. The high speed camera experimental results showed that, with the proposed pressure-modulated shockwave histotripsy, boiling bubbles generated by shockwave heating merged together, forming a larger bubble (of the order of a few hundred micron) at the HIFU focus. This coalesced boiling bubble then persisted and maintained within the HIFU focal zone until the end of the exposure (10, 50, or 100 ms). Furthermore, and most importantly, no violent cavitation clouds which typically appear in boiling histotripsy occurred during the proposed histotripsy excitation (i.e. no shock scattering effect). This was likely because that the peak negative pressure magnitude of the backscattered acoustic field by the boiling bubble was below the cavitation cloud intrinsic threshold. The size of the coalesced boiling bubble gradually increased with the peak pressure magnitudes. In addition, with the proposed method, an oval shaped lesion with a length of 0.6 mm and a width of 0.1 mm appeared at the HIFU focus in the tissue phantom, whereas a larger lesion in the form of a tadpole (length: 2.7 mm, width: 0.3 mm) was produced by boiling histotripsy. Taken together, these results suggest that the proposed pressure-modulated shockwave histotripsy could potentially be used to induce a more spatially localised tissue destruction with a desired degree of mechanical damage through controlling the size and lifetime of a boiling bubble without the shock scattering effect.  相似文献   

10.
A novel numerical model was developed to simulate three-dimensional nonlinear fields generated by high intensity focused ultrasound (HIFU) arrays. The model is based on the solution to the Westervelt equation; the developed algorithm makes it possible to model nonlinear pressure fields of periodic waves in the presence of shock fronts localized near the focus. The role of nonlinear effects in a focused beam of a two-dimensional array was investigated in a numerical experiment in water. The array consisting of 256 elements and intensity range on the array elements of up to 10 W/cm2 was considered. The results of simulations have shown that for characteristic intensity outputs of modern HIFU arrays, nonlinear effects play an important role and shock fronts develop in the pressure waveforms at the focus.  相似文献   

11.
球形集声器在生物组织中形成的组织损伤   总被引:2,自引:0,他引:2       下载免费PDF全文
耿昊  范庭波  张喆  屠娟  郭霞生  李发琪  章东 《物理学报》2014,63(4):44301-044301
球形集声器可在亚波长焦域内形成高强度声压,在高强度聚焦超声治疗中具有潜在应用前景.本文结合非线性声传播理论及生物传热学理论,研究球形集声器在生物组织中形成的组织损伤.实验中采用430 kHz,内径为240 mm的球形集声器对肝组织作用,结果表明:集声器表面声压为53 kPa时作用2 s,可以形成小于波长尺度的组织损伤.理论计算结果与实验结果符合得较好,并且理论模型可优化球形集声器的开口孔径.研究结果表明,球形集声器可应用于肿瘤的精细超声治疗.  相似文献   

12.
微泡对高强度聚焦超声(HIFU)治疗具有增效作用,而HIFU治疗中不同声学条件下微泡对HIFU治疗焦域的影响尚不清楚。本文基于声传播方程、Yang-Church气泡运动方程、生物热传导方程、时域有限差分法(FDTD)、龙格-库塔(RK)法数值仿真研究输入功率、激励频率和气泡初始半径对HIFU在含气泡体模中形成焦域的影响,并利用含Sono Vue造影剂的仿组织体模研究进行实验验证。结果表明,增大输入功率、气泡初始半径和升高激励频率均可增大焦域,随着输入功率的增大,焦域形状可能发生变化,而随着激励频率升高和气泡初始半径的增大,焦域会向远离换能器的方向移动。  相似文献   

13.
The acoustic pressure field of an electrohydraulic extracorporeal shock wave lithotripter is modeled with a nonlinear parabolic wave equation (the KZK equation). The model accounts for diffraction, nonlinearity, and thermoviscous absorption. A numerical algorithm for solving the KZK equation in the time domain is used to model sound propagation from the mouth of the ellipsoidal reflector of the lithotripter. Propagation within the reflector is modeled with geometrical acoustics. It is shown that nonlinear distortion within the ellipsoidal reflector can play an important role for certain parameters. Calculated waveforms are compared with waveforms measured in a clinical lithotripter and good agreement is found. It is shown that the spatial location of the maximum negative pressure occurs pre-focally which suggests that the strongest cavitation activity will also be in front of the focus. Propagation of shock waves from a lithotripter with a pressure release reflector is considered and because of nonlinear propagation the focal waveform is not the inverse of the rigid reflector. Results from propagation through tissue are presented; waveforms are similar to those predicted in water except that the higher absorption in the tissue decreases the peak amplitude and lengthens the rise time of the shock.  相似文献   

14.
New techniques of forming high intensity focused ultrasound (HIFU) fields using dynamic focusing and harmonic multifrequency excitation are developed for ultrasonic diagnostics and therapy. New designs of HIFU transducers based on high-performance composite materials are developed and studied. Finite-element and finite-difference simulations of HIFU transducers and processes of ultrasonic wave propagation in biological tissues are performed. The parameters of piezoceramic materials, piezoelements, and the acoustic fields of focusing ultrasonic transducers are measured. Experiments are performed on biological tissues ex vivo that confirm the efficiency, selectivity, and safety of the developed HIFU transducers and techniques of forming acoustic fields.  相似文献   

15.
In the characterization of high-intensity focused ultrasound (HIFU) systems, it is desirable to know the intensity field within a tissue phantom. Infrared (IR) thermography is a potentially useful method for inferring this intensity field from the heating pattern within the phantom. However, IR measurements require an air layer between the phantom and the camera, making inferences about the thermal field in the absence of the air complicated. For example, convection currents can arise in the air layer and distort the measurements relative to the phantom-only situation. Quantitative predictions of intensity fields based upon IR temperature data are also complicated by axial and radial diffusion of heat. In this paper, mathematical expressions are derived for use with IR temperature data acquired at times long enough that noise is a relatively small fraction of the temperature trace, but small enough that convection currents have not yet developed. The relations were applied to simulated IR data sets derived from computed pressure and temperature fields. The simulation was performed in a finite-element geometry involving a HIFU transducer sonicating upward in a phantom toward an air interface, with an IR camera mounted atop an air layer, looking down at the heated interface. It was found that, when compared to the intensity field determined directly from acoustic propagation simulations, intensity profiles could be obtained from the simulated IR temperature data with an accuracy of better than 10%, at pre-focal, focal, and post-focal locations.  相似文献   

16.
A numerical model for simulating nonlinear pulsed beams radiated by rectangular focused transducers, which are typical of diagnostic ultrasound systems, is presented. The model is based on a KZK-type nonlinear evolution equation generalized to an arbitrary frequency-dependent absorption. The method of fractional steps with an operator-splitting procedure is employed in the combined frequency-time domain algorithm. The diffraction is described using the implicit backward finite-difference scheme and the alternate direction implicit method. An analytic solution in the time domain is employed for the nonlinearity operator. The absorption and dispersion of the sound speed are also described using an analytic solution but in the frequency domain. Numerical solutions are obtained for the nonlinear acoustic field in a homogeneous tissue-like medium obeying a linear frequency law of absorption and in a thermoviscous fluid with a quadratic frequency law of absorption. The model is applied to study the spatial distributions of the fundamental and second harmonics for a typical diagnostic ultrasound source. The nonlinear distortion of pulses and their spectra due to the propagation in tissues are presented. A better understanding of nonlinear propagation in tissue may lead to improvements in nonlinear imaging and in specific tissue harmonic imaging. Published in Russian in Akusticheskiĭ Zhurnal, 2006, Vol. 52, No. 4, pp. 560–570. This article was translated by the authors.  相似文献   

17.
Yanqiu Zhang 《中国物理 B》2021,30(7):78704-078704
The hemispherical phased transducer maximizes the coverage of the skull and the ultrasonic energy per unit area of the skull is minimized, thereby reducing the risk of skull burns, but the transducer has a small focal area adjustment range, increasing the focal length of treatment is an urgent question for this type of transducer. In this paper, a three-dimensional high-intensity focused ultrasound (HIFU) transcranial propagation model is established based on the human head structure. The finite difference time domain (FDTD) is combined with the Westervelt acoustic wave nonlinear propagation equation and Penne's biological heat conduction equation for numerical simulation of the sound pressure field and temperature field. Forming a treatable focal area in a small-opening hemispherical transducer with a small amount of numerical simulation calculation focusing at a set position to determine the minimum partial excitation area ratio of focusing. And then, applying these preliminary results to a large-opening diameter hemispherical transducer and the temperature field formed by it or full excitation is studied. The results show that the focus area with the excitation area ratio of less than 22% moves forward to the transducer side when the excitation sound is formed. When the excitation area ratio is greater than or equal to 23%, it focuses at the set position. In the case of partial incentives, using 23% of the partial array, the adjustable range of the treatable focal area formed in the three-dimensional space is larger than that of the full excitation.  相似文献   

18.
水下声场是海洋环境参数的非线性函数,因此环境参数的不确定性必然会引起水下声场预测的不确定性,从而导致与声场预测相关的声呐探测和水声通信等设备性能的下降。该文将Sobol敏感度指数的计算与多项式混沌展开方法相结合,将敏感度指数表达为环境条件的函数,利用Q范数约束的双曲截断方案来减少多项式项数,有效地分析了设定的"浅海负梯度温跃层"信道中8个环境参数及其交互效应对水下声传播的影响。结果表明,沉积层声速是低频远距离声场不确定性分布的最主要贡献参数,同时对于下发下收的情况,声源深度的影响程度随着声源频率增加而逐渐增大。最后应用射线理论从海底反射的角度解释了各个环境因素影响程度差异的具体原因。该文的研究对水声通信和探测系统在浅海不确定环境下的性能预报研究具有重要的参考意义。  相似文献   

19.
Acoustic fields of powerful ultrasound sources with Gaussian spatial apodization and initial excitation in the form of a periodic wave or single pulse are examined based on the numerical solution of the Khokhlov-Zabolotskaya-Kuznetsov equation. The influence of nonlinear effects on the spatial structure of focused beams, as well as on the limiting values of the acoustic field parameters is compared. It is demonstrated that pressure saturation in periodic fields is mainly due to the effect of nonlinear absorption at a shock front, while in pulsed fields is due to the effect of nonlinear refraction. The limiting attainable values for the peak positive pressure in periodic fields turned out to be higher than the analogous values in pulsed acoustic fields. The total energy in a beam of periodic waves decreases with the distance from the source faster than in the case of a pulsed field, but it becomes concentrated within much smaller spatial region in the vicinity of the focus. These special features of nonlinear effect manifestation provide an opportunity to use pulsed beams for more efficient delivery of wave energy to the focus and to use periodic beams for attaining higher values of pressure in the focal region.  相似文献   

20.
Boiling histotripsy is a High Intensity Focused Ultrasound (HIFU) technique which uses a number of short pulses with high acoustic pressures at the HIFU focus to induce mechanical tissue fractionation. In boiling histotripsy, two different types of acoustic cavitation contribute towards mechanical tissue destruction: a boiling vapour bubble and cavitation clouds. An understanding of the mechanisms underpinning these phenomena and their dynamics is therefore paramount to predicting and controlling the overall size of a lesion produced for a given boiling histotripsy exposure condition. A number of studies have shown the effects of shockwave heating in generating a boiling bubble at the HIFU focus and have studied its dynamics under boiling histotripsy insonation. However, not much is known about the subsequent production of cavitation clouds that form between the HIFU transducer and the boiling bubble. The main objective of the present study is to examine what causes this bubble cluster formation after the generation of a boiling vapour bubble. A numerical simulation of 2D nonlinear wave propagation with the presence of a bubble at the focus of a HIFU field was performed using the k-Wave MATLAB toolbox for time domain ultrasound simulations, which numerically solves the generalised Westervelt equation. The numerical results clearly demonstrate the appearance of the constructive interference of a backscattered shockwave by a bubble with incoming incident shockwaves. This interaction (i.e., the reflected and inverted peak positive phase from the bubble with the incoming incident rarefactional phase) can eventually induce a greater peak negative pressure field compared to that without the bubble at the HIFU focus. In addition, the backscattered peak negative pressure magnitude gradually increased from 17.4 MPa to 31.6 MPa when increasing the bubble size from 0.2 mm to 1.5 mm. The latter value is above the intrinsic cavitation threshold of –28 MPa in soft tissue. Our results suggest that the formation of a cavitation cloud in boiling histotripsy is a threshold effect which primarily depends (a) the size and location of a boiling bubble, and (b) the sum of the incident field and that scattered by a bubble.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号