首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
用NaI闪烁体探测器组成的逃逸电子诊断系统和CdTe半导体探测阵列组成的快电子轫致辐射诊断系统,研究了一定等离子体密度条件下低杂波功率和等离子体电流对逃逸产生的影响以及一定低杂波功率下等离子体密度对逃逸电子产生的不同作用效果。根据实验数据计算了HT-7装置等离子体中电子逃逸的阈值电场和一定放电条件下电子逃逸的阈值能量。  相似文献   

2.
在HT-7托卡马克的等离子体密度调制实验中,通过对欧姆和低杂波电流驱动两种放电条件下等离子体逃逸电子辐射行为的研究,验证了非准稳态等离子体中逃逸电子的产生机制,研究了欧姆和低杂波电流驱动两种放电条件下的大量充气对等离子体整体约束性能的影响。研究结果发现:放电过程中额外的大量工作气体的充入使等离子体偏离了准稳态,逃逸电子初级产生机制和次级产生机制准稳态的假设条件被打破,这时候需要利用非准稳态条件下修正后的逃逸电子归一化阈值速度来解释逃逸电子的辐射行为; 同时也发现放电过程中额外的大量工作气体的充入将使等离子体的整体约束性能变差。  相似文献   

3.
通过红外可见内窥镜诊断系统对EAST等离子体芯部逃逸电子的同步辐射功率谱进行了分析,得出低能段逃逸电子同步辐射主要在红外波段,随着逃逸电子能量的增加,同步辐射向短波方向移动进入可见光波段。在欧姆放电条件下,对逃逸电子同步辐射所产生的的红外可见光进行了成像分析,同时研究了EAST等离子体在低杂波和中性束注入加热条件下的逃逸电子行为。实验结果显示,低杂波和 NBI 的投入总体抑制电子的逃逸,但低杂波投入初期产生的快电子对逃逸电子的产生具有促进作用。  相似文献   

4.
通过红外可见内窥镜诊断系统对EAST 等离子体芯部逃逸电子的同步辐射功率谱进行了分析,得出低能段逃逸电子同步辐射主要在红外波段,随着逃逸电子能量的增加,同步辐射向短波方向移动进入可见光波段。在欧姆放电条件下,对逃逸电子同步辐射所产生的的红外可见光进行了成像分析,同时研究了EAST 等离子体在低杂波和中性束注入加热条件下的逃逸电子行为。实验结果显示,低杂波和NBI 的投入总体抑制电子的逃逸,但低杂波投入初期产生的快电子对逃逸电子的产生具有促进作用。  相似文献   

5.
HL-1M装置中的离轴电子回旋加热实验   总被引:2,自引:2,他引:0  
在HL-1M装置上进行了离轴电子回旋加热实验。研究了电子温度的变化,等离子体密度对加热效果的影响,离轴加热条件下MHD锯齿的变化,波对m/nk=1/1模的影响及在与低杂波电流驱动共同作用下的各种实验现象。 这些现象被认为与高能电子和它们的分布有关。  相似文献   

6.
 HT-7托卡马克的逃逸电子诊断系统由CdTe,BGO,Na三种探测器组成,可以用来观测逃逸电子撞击托卡马克第一壁材料产生的硬X射线轫致辐射,它的能量响应范围是0.3~1.5 MeV。结合电子回旋辐射、中子等诊断手段,研究了HT-7超导托卡马克在低杂波电流驱动下的逃逸电子行为。实验结果显示:高功率低杂波的关断和低功率低杂波的投入都会增强逃逸电子的产生,但是如果低杂波可以将等离子体环电压降低到逃逸的阈值电场以下,低杂波的投入就可以抑制电子的逃逸。逃逸电子的产生还和低杂波功率有着密切的关系,可以通过控制低杂波的投入和关断的时刻以及改变低杂波功率来抑制逃逸电子的产生。  相似文献   

7.
 分析了电流爬升阶段等离子体密度和电流爬升率对逃逸电子行为的影响,研究了低杂波辅助电流驱动条件下的逃逸电子辐射行为。结果发现:电流爬升阶段等离子体密度的大小严重影响了电流爬升阶段甚至电流平顶阶段逃逸电子的行为,较低的等离子体密度将会导致放电过程中比较强的逃逸电子辐射;低能逃逸电子辐射随着电流爬升率的增大而增强;低杂波辅助电流爬升可以有效地节约装置的伏秒数;降低放电过程中的环电压,可有效抑制逃逸电子的产生。  相似文献   

8.
分析了电流爬升阶段等离子体密度和电流爬升率对逃逸电子行为的影响,研究了低杂波辅助电流驱动条件下的逃逸电子辐射行为。结果发现:电流爬升阶段等离子体密度的大小严重影响了电流爬升阶段甚至电流平顶阶段逃逸电子的行为,较低的等离子体密度将会导致放电过程中比较强的逃逸电子辐射;低能逃逸电子辐射随着电流爬升率的增大而增强;低杂波辅助电流爬升可以有效地节约装置的伏秒数;降低放电过程中的环电压,可有效抑制逃逸电子的产生。  相似文献   

9.
周小兵  赵长林 《物理学报》1993,42(8):1257-1265
在Littlejohn的带电粒子引导中心拉格朗日体系下,讨论了电子回旋波对磁镜等离子体中捕获电子与逃逸电子的影响,给出了捕获电子变成逃逸电子以及逃逸电子被电子回旋波捕获的条件,并计算了它们的相互转化的概率。 关键词:  相似文献   

10.
经典放电理论(Townsend和流注理论)解释纳秒脉冲气体放电存在局限性,近年来基于高能电子逃逸的纳秒脉冲气体放电理论研究受到广泛关注.但是目前对大气压空气纳秒脉冲板-板放电中逃逸电子产生机理研究仍较少,严重阻碍了纳秒脉冲放电等离子体的应用发展.本文利用一维粒子模型,对幅值为20 kV的纳秒脉冲电压驱动下,间隙长为1 mm的板-板电极之间的大气压空气放电中逃逸电子的产生机理进行了数值模拟研究..结果表明,在空间电荷动力学行为的影响下,板-板电极之间出现了增强电场区域,使得电子可以满足电子逃逸判据而进入逃逸模式.此外,还观察到放电通道前逃逸电子的预电离效应导致了二次电子崩的产生,随着二次电子崩与放电通道不断汇聚,引导并加速了放电通道的发展,最终导致气隙击穿.本研究进一步揭示了纳秒脉冲板-板放电机理,拓展了纳秒脉冲气体放电基础理论,为纳秒脉冲放电等离子体的应用和发展开辟了新的机会.  相似文献   

11.
The generation of runaway electrons in the international fusion experiment ITER disruptions can lead to severe damage at plasma facing components. Massive gas injection might inhibit the generation process, but the amount of gas needed can affect, e.g., vacuum systems. Alternatively, magnetic perturbations can suppress runaway generation by increasing the loss rate. In TEXTOR disruptions runaway losses were enhanced by the application of resonant magnetic perturbations with toroidal mode number n=1 and n=2. The disruptions are initiated by fast injection of about 3x10{21} argon atoms, which leads to a reliable generation of runaway electrons. At sufficiently high perturbation levels a reduction of the runaway current, a shortening of the current plateau, and the suppression of high energetic runaways are observed. These findings indicate the suppression of the runaway avalanche during disruptions.  相似文献   

12.
Production of runaway electrons during disruptions has been observed in the HT‐7 Tokamak. The runaway current plateaus, which can carry part of the pre‐disruptive current, are observed in lower‐hybrid current drive (LHCD) limiter discharges. It is found that the runaway current can mitigate the disruptions effectively. We can use gas puffing to increase the line‐averaged density to restrain the runaway electrons and rebuild the plasmas after the disruptions. Detailed observations are presented on the runaway electrons generated following disruptions in the HT‐7 tokamak discharges. The results indicate that the magnetic oscillations play a significant role in the loss of runaway electrons in disruptions. There are two important preconditions to rebuild plasmas by runaway electrons after the disruptions. One of them are weak magnetic oscillations; another one are LHWs (lower‐hybrid waves) (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Operation of HT-7 tokamak in a multicycle alternating square wave plasma current regime is reported. A set of AC operation experiments, including LHW heating to enhance plasma ionization during the current transition and current sustainment, is described. The behaviour of runaway electrons is analysed by four HXR detectors tangentially viewing the plasma in the equatorial plane, within energy ranges 0.3--1.2~MeV and 0.3--7~MeV, separately. High energy runaway electrons (\sim MeV) are found to circulate predominantly in the opposite direction to the plasma current, while the number of low energy runaway electrons (\sim tens to hundreds of keV) circulating along the plasma current is comparable to that in the direction opposite to the plasma current. AC operation with lower hybrid current drive (LHCD) is observed to have an additional benefit of suppressing the runaway electrons if the drop of the loop voltage is large enough.  相似文献   

14.
Intensive currents of runaway electrons with energies of 50 keV or more have been observed at high pressures in a plasma betatron in addition to betatron accelerated electrons at lower pressures. The measurements agree with the assumption that these electrons are accelerated in the external field while they are guided by the self magnetic field of the plasma current. Macroscopic instabilities and plasma waves can be excluded as accelerating mechanisms. The strong dependence of the runaway flux upon the gas pressure and the electric field can be explained by collisions between electrons and the other plasma particles. Furthermore the influence of the external magnetic field on the movement of the plasma current to the torus wall was investigated. A maximum circulating runaway current of more than 2000 A (Xenon) appeared when the plasma current was kept approximately in balance by the external magnetic field.  相似文献   

15.
在HT-6B托卡马克低杂波驱动电流(LHCD)的同时,等离子体的粒子及能量约束也随之发生改善。我们从空间多道Hα线的测量推算出LHCD可将等离子体粒子约束时间提高1-5倍,介绍了我们的分析过程,HT-6B上的Hα线测量还表明粒子约束的改善程度与低杂波(LHW)的注入功率无明显依赖关系;改善粒子约束的发生与超热电子的产生相对应,通过观察边界层OII两条不同激发电位的谱线强度比的变化,发现等离子体在约束改善的同时,具有边界电子温度梯度增大的类H模现象。 关键词:  相似文献   

16.
Wave enhanced runaway generation is expected to play an important role in the conversion of plasma current into runaway current during major disruptions. The fast electrons created by electron cyclotron heating (ECH) were used to study this issue in KSTAR. It is found that the fast electrons driven by ECH can enhance runaway production in the flat top phase with high loop voltage. The runaway current in disruptions was not enhanced by the ECH produced fast electron population due to the strong magnetic fluctuations which inhibited the generation of runaway electrons. It is found that a complete loss of existing REs during thermal quench has occurred in KSTAR limiter configuration discharges.  相似文献   

17.
18.
In a tokamak with a toroidal electric field, electrons that exceed the critical velocity are freely accelerated and can reach very high energies. These so‐called `runaway electrons' can cause severe damage to the vacuum vessel and are a dangerous source of hard X‐rays. Here the effect of toroidal electric and magnetic field changes on the characteristics of runaway electrons is reported. A possible technique for runaways diagnosis is the detection of hard X‐ray radiation; for this purpose, a scintillator (NaI) was used. Because of the high loop voltage at the beginning of a plasma, this investigation was carried out on toroidal electric field changes in the first 5 ms interval from the beginning of the plasma. In addition, the toroidal magnetic field was monitored for the whole discharge time. The results indicate that with increasing toroidal electric field the mean energy of runaway electrons rises, and also an increase in the toroidal magnetic field can result in a decrease in intensity of magnetohydrodynamic oscillations which means that for both conditions more of these high‐energy electrons will be generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号