首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 129 毫秒
1.
冯致远  李凯文  骆浩  王侃 《强激光与粒子束》2022,34(2):026006-1-026006-5
为了进行堆芯计算,需要通过组件计算提前构建少群截面参数库。传统确定论的组件截面参数化方法针对宏观截面进行截面参数化,但这种方式不仅需要考虑多种物理状态参数,而且需要考虑历史效应对截面的影响。提出了基于核素微观截面的蒙卡程序参数化方法,该方法可以消除燃耗历史的影响,且考虑的物理状态仅为燃耗深度以及材料温度。利用蒙卡程序产生组件截面参数库耦合堆芯程序进行堆芯计算,首先用蒙卡程序同时统计对应状态点下的核素密度以及核素少群微观截面,再利用核素微观截面进而获得宏观截面进行后续堆芯计算。为了验证方法正确性,构造了一个自定义的压水堆模型,计算结果与连续能量蒙卡计算结果符合良好。  相似文献   

2.
陈思延  潘晖  陈俊  赵常有  郑君萧  王超  卢皓亮  韩嵩 《强激光与粒子束》2022,34(2):026014-1-026014-6
在压水堆核电站中,由于燃料组件装配的压紧力、冷却剂流动、辐射蠕变、燃耗等因素会导致燃料组件的弯曲,燃料组件的弯曲对组件间的水隙分布产生影响,从而影响中子的慢化行为及堆芯的传热性能,进而对反应堆堆芯的运行参数造成影响。本文分析了组件弯曲的成因及机理、影响及后果(包括对堆芯功率分布、径向功率倾斜、焓升因子、热点因子等参数的影响),并使用蒙特卡罗软件JMCT,对组件弯曲的确定论计算程序的正确性进行了验证。最后通过确定论的计算程序模块,对CPR1000核电站的组件弯曲情况进行了模拟分析,计算结果表明:在某一燃耗下,随着水隙增加或减小,燃料组件功率会随之增加或减小,使堆芯的功率分布发生倾斜,影响核电站的安全运行。  相似文献   

3.
给出了径向和轴向倒料行波堆堆芯的详细设计,通过燃耗计算软件MCORE对两种堆芯进行了分析计算。对于轴向行波堆,得到了稳定的核子密度分布和功率分布,并模拟出增殖-燃耗波。稳态时,kef f为1.065,波速约为5.0 cm/a,燃耗深度达到400.0 MWD/kg-HM。对于径向倒料行波堆,采用由外向内的倒料方案,经过一定倒料周期后功率分布趋于稳定。研究发现,渐进稳态kef f随倒料周期的增加呈抛物线变化,燃耗深度随倒料周期的增加线性增大。以最低功率峰为依据,确定倒料周期450 d为最佳倒料周期。此时,渐进稳态kef f为1.020,平均燃耗达到156.0 MWD/kg-HM。  相似文献   

4.
核电软件需要给出计算结果的不确定性,在此基础上才可有效评价核电的安全性。核数据是核电软件堆芯计算不确定性的重要来源之一,而堆芯宏观参数对核数据的敏感性分析是不确定性分析的重要步骤。以秦山二期堆芯为研究对象,对其临界计算结果开展核数据的敏感性分析。首先采用蒙特卡罗程序建立秦山二期首循环计算模型,然后基于中国核数据中心研制的连续能量截面库CENACE V1.0,采用反复裂变几率法计算有效增殖系数对核数据的敏感性系数。通过整理分析秦山二期冷热态、寿期初中末状态的敏感性系数,梳理出核电软件不确定分析中需要关注的重要核素数据。  相似文献   

5.
厉井钢  王超  陈俊  彭靖含 《强激光与粒子束》2022,34(2):026004-1-026004-6
燃料组件在反应堆内受压紧力等作用会发生弯曲,该弯曲会显著改变反应堆局部位置的中子慢化。基于中广核核设计软件包PCM中的组件中子截面计算软件PINE和堆芯核设计软件COCO,开发了专门的燃料组件弯曲模型,以分析燃料组件弯曲对堆芯局部功率分布的影响,并和蒙特卡罗软件JMCT做了对比验证计算。计算结果表明,PCM软件包燃料组件弯曲模型的计算结果与JMCT吻合良好,该软件包可以用于燃料组件弯曲的分析计算。燃料组件的弯曲对于堆芯的局部功率分布有显著的影响,需要在设计中予以特别关注。  相似文献   

6.
行波堆属于新概念堆型,卸料燃耗深度可达400 GWd/tHM,是现有快堆的3~4倍、压水堆的6~8倍,较高的卸料燃耗深度对堆芯物理分析工具计算正确性提出挑战。基于此,以KYLIN-1程序为基础,从能谱、裂变产物核素重要性、燃耗计算误差累积等方面探究行波堆深燃耗计算特点。对典型行波堆六角形组件分析结果表明:低富集度铀组件寿期初、末能谱差别较大,采用单一权重谱制备的多群截面库用于其燃耗计算时,无限增殖系数偏差较大;为保证行波堆深燃耗计算的正确性,燃耗链应包含重要的70种裂变产物核素;行波堆深燃耗计算时,由于燃耗步增多累积的误差较小,无限增殖系数偏差每燃耗步约为0.001%。  相似文献   

7.
快中子反应堆的中子学计算中,少群参数的计算精度直接影响最终的计算精度。通过直接利用点截面的方法产生具体问题的精细群截面,随后进行组件输运计算并以获得的中子通量密度分布归并能群从而得到组件的均匀化少群参数,可以较精确地考虑中等质量核素在中高能量段具有的非常强烈的弹性散射共振效应以及全能量段存在的多核素共振干涉效应等问题。计算结果表明,由点截面产生的细群截面误差均在1%以内,进行能谱计算并利用该能谱归并能群得到少群参数的误差也在1%以内。随着截面精度的改善,最终堆芯计算的精度得到明显提升。  相似文献   

8.
为了验证反应堆物理软件和方法的计算能力,美国CASL (Consortium for Advanced Simulation of LWRs) 项目提出了VERA (Virtual Environment for Reactor Application) 堆芯物理基准题。该基准题以Watts Bar初始堆芯为模型,涵盖从二维单栅元到三维全堆芯的燃耗及换料的十个基准问题。针对VERA基准题模型,利用COSINE软件包中的反应堆蒙特卡罗分析程序cosRMC进行临界计算,得到了有效增殖因子、组件功率分布、控制棒微积分价值和反应性系数等结果。通过与基准题中提供的KENO结果对比,两种蒙特卡罗程序的计算结果吻合良好。这表明cosRMC程序具有从组件到堆芯的计算能力,其临界计算精度基本与KENO程序相当。  相似文献   

9.
为了比较常规快堆与行波堆的堆芯特性,以最大卸料燃耗300 000 MWd/tHM为目标,设计了高燃耗快堆 (HBFR),给出了堆芯的物理学设计方案。采用六批换料方式补偿燃耗反应性损失。选择NAS程序计算了冷停堆状态、热停堆状态和满功率状态三种不同堆芯状态,分析了临界参数、功率分布、DPA特性、温度和功率反应性特性、控制棒价值等堆芯参数。设计结果表明,HBFR的燃料组件最大卸料燃耗接近300 000 MWd/tHM,平均卸料燃耗219 000 MWd/tHM,单循环燃耗反应性损失3.7%(k是有效增殖因子,k是有效增殖因子的变化量),可以通过补偿棒实现反应性控制,HBFR的各参数满足设计目标与设计限值,可以为下一步与行波堆的比较研究提供参考堆芯。  相似文献   

10.
根据线性核素链原理和反应堆燃耗的特点,建立相应核数据库并采用回溯算法生成自适应核素链,完成核素的遍历和计算,形成多群点燃耗计算程序,能够独立进行燃耗计算并具有完整的输出结果形式。同时将所开发的燃耗计算程序与蒙特卡罗程序进行耦合,完成接口模块的设计,形成可用于研究堆和核电站的燃耗-输运耦合计算工具。将所开发的输运-耦合计算程序应用于中国实验快堆首炉堆芯燃耗的计算,将计算结果与现有设计数据进行比较。经过初步分析表明:新的燃耗计算程序能够精确计算锕系核素含量,包括易裂变核素和生成量很小的次锕系核素。对某些锕系核素如Pu241的计算结果还存在较大偏差,这需要对计算结果进一步分析,来确认偏差是来自计算过程还是相关的截面数据。整个燃耗-输运耦合计算系统对裂变产物的处理和反应性变化的计算也与现有的设计数据符合良好。  相似文献   

11.
胡泽华  叶涛  刘雄国  王佳 《物理学报》2017,66(1):12801-012801
核反应堆的中子学模拟计算中,核数据的不确定度导致的积分量计算结果的不确定度,通常采用基于微扰理论的灵敏度与不确定度分析方法 (简称灵敏度法)量化.灵敏度分析法原则上只适用于线性模型,且一般输运计算程序难以直接进行灵敏度分析.而抽样法直接抽样核数据输入中子学计算程序进行计算,通过对计算结果的统计分析评估计算量的不确定度.抽样法易于实现、计算精确、且适用性强.在灵敏度分析与不确定度量化程序SURE中,增加了抽样法不确定度的量化功能.为将抽样法不确定度量化应用于复杂问题的模拟计算,需对其进行细致的考核.为此,选取简单的临界基准实验模型,分别采用灵敏度分析法和抽样法进行不确定度量化,得到了各核素各反应道核数据导致的k_(eff)计算不确定度.对比显示,两种方法的不确定度计算结果有很好的符合,验证了SURE程序抽样法功能的正确性.抽样法计算的k_(eff)符合正态分布,说明在一般核数据的不确定度范围内,k_(eff)与核数据近似成线性关系,利用灵敏度分析法评估k_(eff)计算值的不确定度是适用的.  相似文献   

12.
采用自主开发的SONG/TANG-MSR栅格/堆芯分析程序对新型钍基熔盐堆(TMSR)进行堆芯布置与燃耗分析计算。根据前期的栅格分析相关工作,TMSR采用了无铍(BeF2)燃料熔盐、氧化铍慢化剂以及碳化硅包壳,并在组件栅格初步优化分析的基础上,通过全堆芯计算对熔盐栅格进一步优化和分析,给出了堆芯三区布置方案。该方案具有较高的增殖比,负的功率系数,以及较平的温度分布。根据该堆芯方案,在考虑熔盐在线处理情况下进行了熔盐燃耗计算分析。结果表明,堆芯具有较高的增殖比、较短的倍增时间以及长期稳定运行能力。新型的钍基熔盐设计大大提高了增殖性能,同时又确保堆芯具有足够的安全性能。  相似文献   

13.
徐雪峰  付元光  朱剑钰  李瑞  田东风  伍钧  李凯波 《物理学报》2017,66(8):82801-082801
防止核扩散是国际社会共同努力的目标,其中武器级核材料的防扩散是重中之重.钚是反应堆的副产品,如果不计较经济效益,利用铀为核燃料的反应堆都可以生产武器级钚.本文基于日本Takahama-3压水堆建立了五个模型,并进行中子和燃耗计算,得到两种燃料棒产武器级钚的条件、燃料棒轴向的燃耗分布、组件内燃料棒燃耗的变化区间和全堆芯燃料棒径向燃耗分布.基于上述模型和计算数据给出压水堆堆芯内含有武器级钚的准确位置和UO_2燃料棒中武器级钚的产量.这种低燃耗的乏燃料给国际核不扩散带来了巨大风险,国际社会应该加强对此类乏燃料的监管.  相似文献   

14.
A new version of the tally module of the MCU software package is developed in which the approach for taking directly into account the uncertainty in initial data is implemented that is recommended by the international standard on estimating the uncertainty in results of measuring (ISO 13005). The new module makes it possible to evaluate the effect of uncertainty in initial data (caused by technological tolerances in fabrication of structural members of the core) on neutronic characteristics of the reactor. The developed software is adapted to parallel computing with the use of multiprocessor computers, which significantly reduces the computation time: the parallelization coefficient is almost equal to 1. Testing is performed by examples of solving the problem on criticality for the Godiva benchmark experiment and also for the infinite lattice of fuel assemblies of the VVER-440, VVER-1000, and VVER-1200. The results of calculations of the uncertainty in neutronic characteristics (effective multiplication factor, fission reaction rate), which is caused by uncertainties in initial data due to technological tolerances, are compared (in the first case) to the published results obtained using the precision MCNP5 code and (in the second case) to those obtained by means of the RADAR engineering program. A good agreement of results is achieved for all cases.  相似文献   

15.
堆外探测器响应函数代表了堆芯活性区各组件对堆外探测器计数率的贡献,反映了堆芯功率分布与探测器计数率的关系。研究了三维离散纵标法(SN)程序TORT的共轭输运方法,并开发相应的处理程序,实现了柱坐标下的三维共轭中子注量率到压水堆各燃料组件响应函数的转换。并基于CAP1400核电厂反应堆模型,分析了其堆外探测器响应函数空间分布的特性,与采用TORT多次正向输运计算结果进行了对比分析,两者符合较好。通过本文研究,实现了压水堆核电厂堆外探测器响应函数的三维空间分布计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号