首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
AgInSbTe/Si thin films on glass substrates are prepared by dc magnetron sputtering at room temperature. Using Si underlayer as the thermal diffusion layer, the super-resolution nano-ablation holes with a size of 70hm in the AglnSbTe phase change films are obtained by a far-field focused laser experimental setup, with laser wavelength 405 nm and objective-lens numerical aperture 0.90. The nano-ablation formation mechanism is analysed and discussed via the thermal diffusion of sample structures.  相似文献   

2.
Obliquely deposited thin films of ternary Ag-Ge-S glasses are characterized in this work. Thin films are fabricated in a vacuum thermal evaporator at different evaporation angles and examined by Raman spectroscopy. The Raman mode frequency of GeS4 corner-sharing (CS) structure of the as-deposited films display a red-shift as a function of Ag content due to reduced global connectivity, and therefore decreased network stress. Film thickness of normally deposited thin films is significantly less when compared against obliquely deposited ones. Sulfur-ring (S8) modes are observed in thin films but not in corresponding bulk material. Thermal annealing of thin films results in the disappearance of Sulfur-ring (S8) modes, while the temperature required for this phenomenon is deposition angle dependent. Thickness of the obliquely deposited films shrinks significantly after thermal annealing, which indicates a collapse of the micro-column structure introduced by oblique deposition.  相似文献   

3.
Thermal conductivity of submicron-thick aluminium oxide thin films prepared by middle frequency magnetron sputtering is measured using a transient thermo-reflectance technique. A three-layer model based on transmission line theory and the genetic algorithm optimization method are employed to obtain the thermal conductivity of thin films and the interracial thermal resistance. The results show that the average thermal conductivity of 330- 1000nm aluminium oxide thin films is 3.3 Wm^-1K^-1 at room temperature. No significant thickness dependence is found. The uncertainty of the measurement is less than 10%.  相似文献   

4.
Thin amorphous As-Se films were prepared by pulsed laser deposition (PLD) and by classical thermal evaporation techniques. Raman spectra and optical properties (optical gap, Egopt, index of refraction, n, third-order non-linear susceptibility, χ(3)) of prepared films and their photo- and thermally induced changes were studied. The structure of laser deposited films was close to the corresponding bulk glasses contrary to thermal evaporated films. The composition of PLD films was practically unchanged during the process of deposition. The optically and thermally induced changes of n and of Egopt in PLD films are different from the changes in thermally deposited films. The differences are discussed.  相似文献   

5.
The thermal conductivity of amorphous silicon thin films is measured in one dimension steady state condition. The experimental method is based on heating the sample front surface and monitoring the temperatures at its two sides. The experiments were carried out in conditions ensuring one-direction heat flow from top to bottom throughout the sample thickness. Sputtered a-Si:H films prepared with different conditions are used in order to investigate the dependence of thermal conductivity on material properties (i.e. hydrogen content and microstructure). The results show that, firstly, amorphous silicon is a very bad thermal conductor material. Secondly, the disorder in the film network plays an important role in thermal conduction. The highly disordered film exhibits the lowest thermal conductivity.  相似文献   

6.
The temperature variation of the thermal conductivities of as-prepared, mechanically stretched, as-prepared and then annealed PPS samples are presented. Unusually high thermal conductivity values are observed as compared to other polymeric materials. In agreement with the X-ray diffraction observations, the thermal conductivity of the oriented film is higher than that of the as-prepared or annealed films. The differences observed after stretching are comparable to those previously reported for polyethylene and polyacetylene films for the same draw ratios. These unusually high thermal conductivity values justify the use of PPS in devices where efficient heat dissipation, associated with electrical insulation, is required.  相似文献   

7.
Polycrystalline Si0.96Mn0.04:B films were prepared by cosputtering deposition followed by rapid thermal annealing for crystallization. The films are ferromagnetic with Curie temperatures of about 250 K. Through the approach of microwave plasma enhanced chemical vapor deposition, the films were treated by hydrogen plasma and boron plasma. After the plasma treatments, the structural properties of the films did not change, while both the saturation magnetization and hole concentration in the films changed. The correlation between the magnetic properties and the transport properties of the Si0.96Mn0.04:B films suggests that free hole carriers play an important role in Si:Mn diluted magnetic semiconductors.  相似文献   

8.
H.L. Luo 《Applied Surface Science》2007,253(12):5203-5207
Plasma polymerization gains increasing interest for the deposition of films with functional properties suitable for a wide range of modern applications on account of its advantageous features. In this study, carbon dioxide (CO2) was chosen as carrier gas at flow rates of 30 and 60 sccm, respectively and styrene vapor was used as the monomer to prepare polystyrene films on glass substrates. The structure and composition of the plasma polymerized films were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and compared with the film prepared by conventional thermal polymerization. The morphology information of the films was provided by optical microscopy. XPS and FT-IR results reveal that chemical composition of the plasma polymerized films is different from that of the thermal polymerized film and that oxygen content in the plasma polymerized films increases with the flow rate of CO2. Furthermore, the presence of oxygen-containing groups on the surface of plasma polymerized polystyrene films is confirmed. It is also found that the composition and morphology of the plasma polymerized films are controlled by the flow rate of CO2.  相似文献   

9.
The influence of thermal diffusion on laser ablation of metal films   总被引:2,自引:0,他引:2  
Single-shot ablation thresholds of nickel and gold films in the thickness range from 50 nm to 7 m have been measured for 14 ns laser pulses at 248 nm, using photoacoustic shock wave detection in air. The metal films were deposited on fused silica substrates. The ablation threshold was found to increase linearly with film thickness up to the thermal diffusion length of the film. Beyond this point it remains independent of film thickness. The proportionality between threshold fluence and thickness allows the prediction of ablation thresholds of metal films from the knowledge of their optical properties, evaporation enthalpies and thermal diffusivities. Physically it proves that ablation is driven by the energy density determined by the thermal diffusion length. A simple thermodynamic model describes the data well. Thermal diffusivities, an essential input for this model, were measured using the technique of transient thermal gratings. In addition, the substrate dependence of the ablation threshold was investigated for 150 nm Ni films.  相似文献   

10.
Hybrid inorganic-organic second-order nonlinear optical (NLO) materials have been obtained through hydrolysis and co-condensation between tetraethyl silicate (TEOS), Vinyltriethoxysilane (VTES) and an alkoxysilane dye (ICTES-DR1). The hybrid materials showed a thermal stability up to 306 °C in thermogravimetric analysis (TGA) thermograms and no visible glass transition temperature (Tg) was observed in the range 50-200 °C in differential scanning calorimetry (DSC) thermograms. The poling profiles of the hybrid films were investigated by using the in situ second harmonic generation (SHG) measurement. The thermal stability of the second order NLO properties of the poled films were also investigated by the in situ SHG intensity probing. It has been shown that the NLO response and its thermal stability were strongly dependent on the thermal pretreatment of the films.  相似文献   

11.
On nanoscale, thermal conduction is affected by system size. The reasons are increased phonon scattering and changes in phonon group velocity. In this paper, the in-plane thermal resistivity of nanoscale silicon thin films is analyzed by molecular dynamics (MD) techniques. Modifications to the dispersion relation are calculated directly with MD methods at high temperature. The results indicate that the dispersion relation starts to change for very thin films, at around two nanometers. The reasons are band folding and phonon confinement. Thermal resistivity is analyzed by the direct non-equilibrium method, and the results are compared to kinetic theory with modified dispersion relations. Thermal resistivity is affected by both surface scattering and dispersion. Moreover, in thin films, the characteristic vibrational frequency decreases, which in standard anharmonic scattering models indicates a longer relaxation time and affects the resistivity. The results indicate that in very thin films, the resistivity becomes highly anisotropic due to differences in surface scattering. In two cases, surface scattering was found to be the most important mechanism for increasing thermal resistivity, while in one case, phonon confinement was found to increase resistivity more than surface scattering.  相似文献   

12.
Single-shot laser damage of Ni and Cr films on fused silica substrates has been studied as a function of film thickness, utilizing 248 nm/14 ns pulses and detection by probe beam deflection. Threshold fluences for visible damage and vaporization are compared to predictions of the heat diffusion model. The model fits thresholds for visible damage well and identifies their origin, which is melting for Ni films and brittle-to-ductile phase transition for Cr films. When predicting thresholds for vaporization, the diffusion model is of limited success in case of Ni films but fails completely for Cr films, indicating that transient thermal properties of the material should be taken into account. Microscopic inspection shows that Cr films rupture at low fluences before entering the common sequence of melting and vaporizing with increasing fluence. 17 December 1996/Accepted: 17 December 1996  相似文献   

13.
The growth mechanism and stress relief patterns of nickel (Ni) films, deposited on silicone oil surfaces by a thermal evaporation method, have been studied systematically. Our experiment shows that the growth mechanism of the Ni films approximately obeys a two-stage growth model. Characteristic cracks with sinusoidal appearance resulted from the internal stress can be frequently observed in the continuous Ni films after the samples are removed from the vacuum chamber. Several crack modes including the regularly sinusoidal cracks, zigzag cracks, attenuation cracks and self-similar cracks are described and analyzed by using the general theory of buckling of plates in detail. The internal stress and propagating velocity of the sinusoidal cracks are also discussed in this paper.  相似文献   

14.
The interactions in ternary and quaternary Co-based alloy thin films for longitudinal recording media, with different thickness, are studied. The analysis is performed through the measurement of the initial magnetization and ordinary hysteresis curves. The interactions result stronger in quaternary than in ternary alloy films and when the film thickness is smaller. These findings are discussed in relationship with the evolution of the magnetization switching, characterized by a tendency towards a more coherent rotation of the magnetization in single-domain grains of thinnest and quaternary films, owing to the complex structure of these films. The impact of this evolution on the thermal stability of the magnetic properties is also discussed.  相似文献   

15.
Evaporated thin films of zinc sulfide (ZnS) have been deposited in a low ambient atmosphere of hydrogen sulfide (H2S ∼10−4 Torr). The H2S atmosphere was obtained by a controlled thermal decomposition of thiourea [CS(NH2)2] inside the vacuum chamber. It has been observed that at elevated substrates temperature of about 200 °C helps eject any sulfur atoms deposited due to thermal decomposition of ZnS during evaporation. The zinc ions promptly recombine with H2S to give better stoichiometry of the deposited films. Optical spectroscopy, X-ray diffraction patterns and scanning electron micrographs depict the better crystallites and uniformity of films deposited by this technique. These deposited films were found to be more adherent to the substrates and are pinhole free, which is a very vital factor in device fabrication.  相似文献   

16.
The structural characterization of heat-treated CN films fabricated by dual-facing-target sputtering for soft X-ray multilayer mirrors was performed by means of X-ray diffraction (XRD), Raman spectroscopy (RS) and X-ray photoelectron spectroscopy (XPS). The XRD analyses indicate a graphization process in the CN films during thermal annealing. The Raman analyses imply that the primary bonding in the CN films is sp2. In other words, the formation of the sp3 bonding in the CN films can be suppressed effectively by doping with N atoms, and thus the thickness expansion resulting from the changes in the density of CN films during annealing can be decreased considerably. This result is also clarified by the increased conductivity measured. The XPS results give the information of the existence of the strong covalent bonding between N and C atoms, which can slow down the tendency of the structural relaxation during annealing. These results suggest that CN films suitable for soft X-ray multilayers used at high-temperature environments can be obtained by reactive dual-facing-target sputtering. With the low-angle X-ray diffraction measurements, we do observe the enhanced thermal stability of CoN/CN multilayers. Received: 2 October 1998 / Accepted: 21 April 1999 / Published online: 23 September 1999  相似文献   

17.
Composition in amorphous Si1-xCx:H heteroepitaxial thin films on Si (100) by plasma enhanced chemical vapour deposition (PECVD) is analysed. The unknown x (0.45-3.57) and the depth profile of hydrogen in the thin films are characterized by Rutherford backscattering spectrum (RBS), resonance-nuclear reaction analysis (R-NRA) and elastic recoil detection (ERD), respectively. In addition, the depth profile of hydrogen in the unannealed thin films is compared to that of the annealed thin films with rapid thermal annealing (RTA) or laser spike annealing (LSA) in nitrogen atmosphere. The results indicate that the stoichiometric amorphous SiC can be produced by PECVD when the ratio of CH4/SiH4 is approximately equal to 25. The content of hydrogen decreases suddenly from 35% to 1% after 1150℃ annealing. RTA can reduce hydrogen in SiC films effectively than LSA.  相似文献   

18.
Synthesis and characterization of ZnO thin films by thermal evaporation   总被引:1,自引:0,他引:1  
ZnO thin films have been successfully synthesized by thermal evaporation of pure zinc at 900 °C under the flow of different percentages of argon and oxygen gases. The films were characterized by X-ray diffraction (XRD), variable pressure scanning electron microscopy (VPSEM), energy dispersive X-ray spectroscopy (EDS) and UV–vis spectroscopy. The aim of this paper is to study the influence of the oxygen percentage on the structural and morphological properties of the ZnO films. VPSEM results show that very thick needle structures were produced at high oxygen percentages. EDS results revealed that only Zn and O are present in the sample, indicating a composition of pure ZnO. XRD results showed that the ZnO synthesized under different quantities of oxygen were crystalline with the hexagonal wurtzite structure. UV–vis spectroscopy results indicated that the optical band gap energies from the transmission spectrum are between 3.62 and 3.69 eV for ZnO thin films.  相似文献   

19.
We demonstrate that graphene-based transparent and conductive thin films (GTCFs), fabricated by thermal reduction of graphite oxide, have very similar electronic and structural properties as highly oriented pyrolytic graphite (HOPG). Electron spectroscopy results suggest that the GTCFs are also semi-metallic and that the individual graphene sheets of the film are predominantly oriented parallel to the substrate plane. These films may therefore be considered as a technologically relevant analogue to HOPG electrodes, which cannot be easily processed into thin films.  相似文献   

20.
The structural and luminescence related optical behaviours of Au ion implanted ZnO films grown by magnetic sputtering and their post implantation annealing behaviours in the temperature range of 100-700 °C have been investigated. Optical absorption and transmittance spectra of the films indicate that band edge of Au-implanted ZnO has shifted to high energy range and optical band gap has increased, because the sharp difference of thermal expansion induces the lattice mismatch between ZnO and SiO2. PL spectra reveal that UV and visible luminescence bands of ZnO films can be improved after thermal annealing due to recovery of defects and Au ions incorporation. Importantly, green luminescence band of 530 nm has been only observed in the Au-implanted and subsequently annealed ZnO films and it enhances with the increasing annealing temperature, which can be related to Au atoms or clusters in ZnO films. Furthermore, X-ray photoelectron spectroscopy measurements reveal that the Au0 is dominant state in Au implanted and annealed ZnO films. Possible mechanisms, such as optical transitions of Au atoms or clusters and deep level luminescence of ZnO, have been proposed for green emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号