首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pure 2% and 4% Ag-doped ZnO thin films have been synthesized on glass substrates by sol–gel method. The structure, morphology and optical properties of the samples have been studied by X-ray diffractometer (XRD), scanning probe microscope, UV–vis spectrophotometer, respectively. The XRD result shows that the pure ZnO has a wurtzite hexagonal structure, no phase segregation is observed. The surface morphology of pure ZnO thin film shows that the grains are growing preferentially along the c-axis orientation perpendicular to the substrates. The transmittance spectra reveal that all samples have high transmittance above 90% in visible region. With Ag doping content increase, a red shift is observed. The performance of Ag-doped ZnO films using in thin film solar cells are simulated. The results show that 4% Ag-doped ZnO thin film can greatly improve the absorption of the cells. Compare to pure ZnO, solar cell's energy conversion efficiency improvement of 2.47% is obtained with 4% Ag doped ZnO thin film.  相似文献   

2.
Zinc oxide nanoparticles based UV detector was fabricated on thermally oxidized silicon substrate. ZnO nanoparticle films were deposited using sol–gel route. The seed solution was prepared using two different solvents (methanol and isopropyl alcohol (IPA)). The surface morphology of the prepared films was characterized by FESEM. Structural characterization along with optical measurements was carried out using XRD and UV–vis spectroscopy. For the UV photo-detector, ZnO thin film prepared in IPA is selected based on their structural and optical analysis. The changes in photo-response of ZnO thin film with respect to time was studied under the dark and variable UV intensities. It was observed that the photocurrent increased with a factor of 4.82 under 1.16 mW of UV intensity. It is believe that the synthesized ZnO thin films have potential to use in the ultraviolet photo-detector applications.  相似文献   

3.
Mn-doped ZnO thin films with different percentage of Mn content (0, 1, 3 and 5 at.%) and substrate temperature of 350 °C, were deposited by a simple ultrasonic spray pyrolysis method under atmospheric pressure. We have studied the structural and optical properties by using X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and ultra-violet visible near infrared (UV–Vis-NIR) spectroscopy. The lattice parameters calculated for the Mn-doped ZnO from XRD pattern were found to be slightly larger than those of the undoped ZnO, which indicate substitution of Mn in ZnO lattice. Compared with the Raman spectra for ZnO pure films, the Mn-doping effect on the spectra is revealed by the presence of additional peak around 524 cm−1 due to Mn incorporation. With increasing Mn doping the optical band gap increases indicating the Burstein–Moss effect.  相似文献   

4.
Cu- and Ag-doped ZnO films were deposited by direct current co-reactive magnetron sputtering technique. The microstructure, the chemical states of the oxygen, zinc, copper and silver and the optical properties in doped ZnO films were investigated by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS) and UV-Visible spectroscopy. XRD analysis revealed that both of Cu- and Ag-doped ZnO films consist of single phase ZnO with zincite structure while the doping elements had an evident effect on the (0 0 2) preferential orientation. The XPS spectra showed that the chemical states of oxygen were different in Cu- and Ag-doped ZnO thin films, which may lead to the shift of the band gap as can be observed in the transmittance and absorption spectra. Meanwhile, the widths of band tails of ZnO films became larger after Cu and Ag doping.  相似文献   

5.
The transparent thin films of undoped, Mn-doped, and Ni-doped zinc oxide (ZnO) have been deposited on glass substrates via sol-gel technique using zinc acetate dehydrate, nickel chloride, and manganese chloride as precursors. The structural properties and morphologies of the deposited undoped and doped ZnO thin films have been investigated. X-ray diffraction (XRD) spectra, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were used to examine the morphology and microstructure of the thin films. Optical properties of the thin films were determined by photoluminescence (PL) and UV/vis spectroscopy. The analyzed results indicate that the obtained films are of good crystal quality and have smooth surfaces, which have a pure hexagonal wurtzite ZnO structure without any Mn or Ni related phases. The band gap energy was estimated by Tauc's method and found to be 3.28, 3.26, and 3.34 eV for ZnO, Ni-doped ZnO, and Mn-doped ZnO thin films at room temperature, respectively. Room temperature photoluminescence is observed for the ZnO, Ni-doped ZnO, and Mn-doped ZnO thin films.  相似文献   

6.
Pure ZnO and Mn (1%wt.) doped-ZnO nanocrystalline particles were synthesized by reverse micelle method. The structural properties of the nanoparticles were investigated by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) techniques. UV–vis and photoluminescence (PL) spectroscopy was used for analyzing the optical properties of the nanoparticles. XRD and TEM results revealed the formation of ZnO and Mn doped-ZnO nanocrystalline particles with pure wurtzite crystal structure and average particle size of 18–21 nm. From UV–vis studies, the optical band gap energy of 3.53 and 3.58 eV obtained for ZnO and Mn doped-ZnO nanoparticles, respectively. Further optical analysis showed that the refractive index decreases from 2.35 to 1.35 with the change of wavelength. Room-temperature photoluminescence analysis of all samples showed four main emission bands including a strong UV emission band, a weak blue band, a week blue–green band, and a weak green band which indicated their high structural and optical quality. Moreover, the samples exposed to gamma rays sources of 137Cs and 60Co and their thermoluminescence properties were investigated. The thermoluminescence response of ZnO and Mn doped-ZnO nanocrystalline particles as a function of dose exhibited good linear ranges, which make them very promising detectors and dosimeters suitable for ionizing radiation.  相似文献   

7.
We report here the fabrication of ZnO nanoparticles embedded on glass substrate by sol–gel and spin coating technique. Transmission electron microscope images revealed that the thin film is composed of ZnO nanoparticles. X-ray diffraction data confirms that the fabricated ZnO nanoparticles have hexagonal unit cell structure. The ZnO nanocrystals of the thin film are oriented along the c-axis of the hexagonal unit cell. UV–vis absorption spectroscopy shows that the absorption occurring at 373 nm in the ZnO thin film. The band gap was calculated from the absorption data and found to be 3.76 eV. This band gap enhancement occurs due to size effect in the nanoscale regime. Room temperature photoluminescence spectrum shows strong green emission at 530 nm owing to the singly ionized oxygen vacancy. This green emission was further investigated by annealing the thin film at different temperature. This singular green emission will be very useful in optoelectronic and nanophotonic devices.  相似文献   

8.
In this work, zinc oxide nanocrystals with an average particle size of 13–22 nm are readily synthesized in aqueous medium by the wet synthesis method. Different sized nanocrystals obtained with change in calcination temperature are characterized by PL photoluminescence (PL) and UV–vis absorption spectroscopies, X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The average crystal size of the as prepared ZnO nanopowder is determined by XRD and was found to be in good agreement with the UV–vis absorption analysis. The quality of different ZnO nanopowders is confirmed by XRD spectra. On the basis of different characterizations, ZnO calcined for 1 h (due to its large size and less agglomeration) is chosen for synthesis of ZnO–CdSe nanocomposites with variable sized CdSe QD's (Quantum Dots). Nano-composites are synthesized using bifunctional linker molecule Mercaptopropionic Acid (MPA), and by directly adsorbing CdSe QD's over the surface of ZnO nanocrystals. The difference in charge transfer mechanism in ZnO–CdSe nanocomposites due to different crystallite size of CdSe QD's is studied. Higher crystallinity of ZnO–CdSe nanocomposites can be determined from XRD characterization. Size and mode of attachment in various ZnO–CdSe nanocomposites are determined by SEM studies.  相似文献   

9.
In the present study, a two-step method was applied to synthesise Cu2+-modified TiO2 nanorod array thin films for photocatalytic processes. TiO2 nanorod array thin films were synthesised by a hydrothermal method and then modified with an ultrasonic-assisted sequential cation adsorption method. The samples were characterised by X-ray diffraction (XRD), UV–vis diffuse reflectance spectra (DRS), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy and inductively coupled plasma mass spectroscopy (ICP-MS) analysis. The photoelectrochemical properties of the samples were evaluated by linear sweep voltammetry and Mott–Schottky analysis; photocatalytic activities were tested by methylene blue degradation under visible light. The photocurrent density of the TiO2/FTO sample modified with 50 mM Cu2+ solution was 26 times higher than that of the unmodified TiO2/FTO sample. Additionally, methylene blue degradation efficiency under visible light was increased 40% with respect to the efficiency of the unmodified sample. The mechanism of the photocatalytic activity enhancement of Cu2+-modified TiO2 nanorod films was discussed.  相似文献   

10.
Zinc oxide (ZnO) thin films on Si (1 1 1) substrates were deposited by pulsed laser ablation of ZnO target at different oxygen pressures. A pulsed Nd:YAG laser with wavelength of 1064 nm was used as laser source. The deposited thin films have been characterized by X-ray diffraction (XRD), Atomic force microscopy (AFM), and Raman spectroscopy. XRD measurements indicate that the ZnO thin films deposited at the oxygen pressure of 1.3 Pa have the best crystalline quality. AFM results show that the surface roughness of ZnO film increases with the increase of oxygen pressure. The Raman results indicate that oxygen ambient plays an important role in removing defects due to excess zinc.  相似文献   

11.
Nanostructured ZnO–CuO composite with an open and porous surface was successfully prepared through a simple one-step homogeneous coprecipitation method under low temperature (80 °C), without using any organic solvent or surfactant. The as-prepared samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and UV–vis spectroscopy. The results demonstrated that the ZnO–CuO nanocomposite presented a hierarchical 3D morphology composed of flower-like ZnO microstructures adorned with leaf-like CuO nanopatches. The photocatalytic activity of ZnO–CuO nanocomposite was evaluated by the photodegradation of rhodamine B under the simulated sunlight irradiation, and compared with those of the monocomponent oxides synthesized by the identical synthetic route and their physical mixture in the approximate molar ratio as that of the nanocomposite. The results indicated that the ZnO–CuO nanocomposite exhibited an appreciable photocatalytic activity, which was mainly attributed to the extended photo-responding range and the increased charge separation rate in the nanocomposite.  相似文献   

12.
We have studied the properties of ZnO thin films grown by laser ablation of ZnO targets on (0 0 0 1) sapphire (Al2O3), under substrate temperatures around 400 °C. The films were characterized by different methods including X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and atomic force microscopy (AFM). XPS analysis revealed that the films are oxygen deficient, and XRD analysis with θ-2θ scans and rocking curves indicate that the ZnO thin films are highly c-axis oriented. All the films are ultraviolet (UV) sensitive. Sensitivity is maximum for the films deposited at lower temperature. The films deposited at higher temperatures show crystallite sizes of typically 500 nm, a high dark current and minimum photoresponse. In all films we observe persistent photoconductivity decay. More densely packed crystallites and a faster decay in photocurrent is observed for films deposited at lower temperature.  相似文献   

13.
Cadmium sulfide (CdS) nanoparticles were synthesized by a novel wet chemical route with various organic thiol stabilizers. Systematic experimental studies, including X-ray diffraction (XRD), ultraviolet–visible (UV–vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), photoluminescence (PL) spectroscopy, and time-resolved photoluminescence (TRPL), have evidenced that the stability, crystallinity, and optical properties of the CdS nanoparticles are affected by the organic groups which generate significant effects in surface reconstruction. Particle size was evaluated from UV–vis spectroscopy using the effective mass approximation (EMA) method and from XRD patterns based on Scherrer?s formula. The S–H vibrations are not detectable in the infrared (IR) spectra of any of the bound ligands, which are expected for thiols covalently bound to the surface of nanoparticles. PL studies reveal that the emission from the nanostructures is not much influenced by the surface states, indicating a good passivation of the particle?s surface. The time-resolved measurements reveal a biexponential decay behavior. The fast decay component is attributed to the recombination of core states, while the slow decay component of PL is associated with the charge-carrier recombination process with the involvement of surface states.  相似文献   

14.
Novel g-C3N4/ZnO composite photocatalyst was synthesized from an oxygen-containing precursor by direct thermal decomposition urea in air without any other templates assistance. Different percentages of g-C3N4 were hybridized with ZnO via the monolayer-dispersed method. The prepared g-C3N4/ZnO composites were characterized by XRD, SEM, UV–vis diffuse reflectance spectra (DRS), FT-IR, TEM and XPS. The composites showed much higher efficiency for degradation of Rhodamine B (RhB) than ZnO under UV and visible light irradiation. Especially, the photocatalytic efficiency was the highest under UV light irradiation when the percentage of g-C3N4 was 6%. The improved photocatalytic activity may be due to synergistic effect of photon acquisition and direct contact between organic dyestuff and photocatalyst. Then, effective separation of photogenerated electron–hole pairs at the interface of g-C3N4 is an important factor for improvement of photocatalytic activity. This work indicates that g-C3N4 hybrid semiconductors photocatalyst is a promising material in pollutants degradation.  相似文献   

15.
Oleic acid (OA)-capped CdS nanoparticles (NPs) have been successfully synthesized via the direct reaction of Cd(CH2COO)2·2H2O with S powder in OA solvent at 230 °C under nitrogen flow, which was a kind of clean and air-stable solvent. The morphologies and structures of the as-synthesized CdS NPs are examined by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray diffractometer (XRD), and Fourier transform infrared (FTIR) spectroscopy, and the typical Ostwald ripening growth mechanism is concluded. Moreover, the collected ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) spectroscopy demonstrate good optical properties of CdS NPs.  相似文献   

16.
Lithium (Li) and magnesium (Mg) co-doped zinc oxide (ZnO) thin films were deposited by sol–gel method using spin coating technique. The films were deposited on glass substrates and annealed at different temperatures. The effects of annealing temperature on the structural, optical and electrical properties of the deposited films were investigated using X-ray diffraction (XRD), Ultraviolet–Visible absorption spectra (UV–VIS), photoluminescence spectra (PL), X-ray photo electron spectroscopy (XPS) and Hall measurements. XRD patterns indicated that the deposited films had a polycrystalline hexagonal wurtzite structure with preferred (0 0 0 2) orientation. All films were found to exhibit a good transparency in the visible range. Analysis of the absorption edge revealed that the optical band gap energies of the films annealed at different temperatures varies between 3.49 eV and 3.69 eV. Room temperature PL spectra of the deposited films annealed at various temperatures consist of a near band edge emission and visible emission due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial zinc (Zni), interstitial oxygen (Oi) and zinc vacancy (VZn) which are generated during annealing process. The influence of annealing temperature on the chemical state of the dopants in the film was analysed by XPS spectra. Ion beam analysis (Rutherford back scattering) experiments were performed to evaluate the content of Li and Mg in the films. Hall measurements confirmed the p-type nature of the deposited films.  相似文献   

17.
ZnO films doped with different vanadium concentrations are deposited onto glass substrates by dc reactive magnetron sputtering using a zinc target doped with vanadium. The vanadium concentrations are examined by energy dispersive spectroscopy (EDS) and the charge state of vanadium in ZnO thin films is characterized by x-ray photoelectron spectroscopy. The results of x-ray diffraction (XRD) show that all the films have a wurtzite structure and grow mainly in the c-axis orientation. The grain size and residual stress in the deposited films are estimated by fitting the XRD results. The optical properties of the films are studied by measuring the transmittance. The optical constants (refractive index and extinction coefficient) and the film thickness are obtained by fitting the transmittance. All the results are discussed in relation with the doping of the vanadium.  相似文献   

18.
Cu-doped ZnO nanorods with different Cu concentrations were synthesized through the vapor transport method. The synthesized nanorods were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and UV–vis spectroscopy. The XRD results revealed that Cu was successfully doped into ZnO lattice. The FE-SEM images showed that the undoped ZnO has needle like morphology whereas Cu-doped ZnO samples have rod like morphology with an average diameter and length of 60–90 nm and 1.5–3 μm respectively. The red shift in band edge absorption peak in UV-vis absorbance spectrum with increasing Cu content also confirm the doping of Cu in ZnO nanorods. The photocatalytic activity of pure and Cu-doped ZnO samples was studied by the photodegradation of resazurin (Rz) dye. Both pure ZnO and the Cu-doped ZnO nanorods effectively removed the Rz in a short time. This photodegradation of Rz followed the pseudo-first-order reaction kinetics. ZnO nanorods with increasing Cu doping exhibit enhanced photocatalytic activity. The pseudo-first-order reaction rate constant for 15 % Cu-doped ZnO is equal to 10.17×10?2min?1 about double of that with pure ZnO. The increased photocatalytic activity of Cu-doped ZnO is attributed to intrinsic oxygen vacancies due to high surface to volume ratio in nanorods and extrinsic defect due to Cu doping.  相似文献   

19.
The present work reports on the chemosynthesis of nanocrystalline lead sulphide (PbS) thin films by a facile and cost-effective chemical bath deposition (CBD) method onto soda-lime glass substrates. The X-ray diffraction (XRD) pattern shows the formation phase pure PbS with cubic crystal structure. Electronic structures and chemical states of PbS film have been performed by X-ray photoelectron spectroscopy (XPS). Field emission-scanning electron microscopy (FESEM) images show the transition from granular-to-cubic-to-cubo-octahedra like surface morphology with the increase in the deposition time from 20 to 90 min. The UV–vis–NIR absorption spectra of PbS thin films are measured, and a classical Tauc approach was employed to estimate their band gap energies. The increase in band gap energy from 0.99 to 2.06 eV with the reduction in crystallite size evinces quantum size effect. This work demonstrates a simple and effective solution approach to deposit PbS nanostructured thin films having predominant quantum confinement. This approach would be helpful in nano-PbS sensitized oxide based solar cells, which are recently under intensive investigations.  相似文献   

20.
采用脉冲激光沉积技术在Si/蓝宝石衬底上制备了ZnO薄膜,结合快速退火设备研究了不同退火温度(500~900℃)及退火气氛(N2,O2)对薄膜的结构及其发光性能的影响。并优化条件得到具有最小半峰全宽及最大晶粒尺寸的薄膜。X射线衍射(XRD)结果表明:氮气氛下退火的ZnO薄膜最佳退火温度为900℃;氧气氛下退火的ZnO薄膜最佳退火温度为800℃。红外(IR)光谱中,退火后Zn-O特征振动峰红移,说明在退火过程中,原子重新排布后占据较低能量位置;同样的退火温度下,氮气氛下退火的薄膜质量更优。同步辐射光电子能谱(synchrotron-based XPS)分别表征了未退火及N2,O2下900℃退火的ZnO薄膜,分峰拟合结果表明氧气氛下退火产生更多的氧空位。结构表征结合光致发光(PL)谱表明绿光的发光峰与氧空位有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号