首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hao Sun 《中国物理 B》2022,31(11):117503-117503
The magnetic and magnetocaloric effects (MCE) of the amorphous $RE_{55}$Co$_{30}$Al$_{10}$Si$_{5}$ ($RE={\rm Er}$ and Tm) ribbons were systematically investigated in this paper. Compounds with $R ={\rm Er}$ and Tm undergo a second-order magnetic phase transition from ferromagnetic (FM) to paramagnetic (PM) around Curie temperature $T_{\rm C} \sim 9.3$ K and 3 K, respectively. For Er$_{55}$Co$_{30}$Al$_{10}$Si$_{5}$ compound, an obvious magnetic hysteresis and thermal hysteresis were observed at low field below 6 K, possibly due to spin-glass behavior. Under the field change of 0 T-5 T, the maximum values of magnetic entropy change ($-\Delta S_{\rm M}^{\rm max}$) reach as high as 15.6 J/kg$\cdot$K and 15.7 J/kg$\cdot$K for Er$_{55}$Co$_{30}$Al$_{10}$Si$_{5}$ and Tm$_{55}$Co$_{30}$Al$_{10}$Si$_{5}$ compounds, corresponding refrigerant capacity (RC) values are estimated as 303 J/kg and 189 J/kg, respectively. The large MCE makes amorphous $RE_{55}$Co$_{30}$Al$_{10}$Si$_{5 }$ ($RE={\rm Er}$ and Tm) alloys become very attractive magnetic refrigeration materials in the low-temperature region.  相似文献   

2.
Tina Raoufi  Jincheng He 《中国物理 B》2023,32(1):17504-017504
We present a study on the magnetocaloric properties of a CaBaCo$_{4}$O$_{7}$ polycrystalline cobaltite along with research on the nature of magnetic phase transition. The magnetization as a function of temperature identifies the ferrimagnetic to paramagnetic transition at a Curie temperature of 60 K. Moreover, a Griffiths-like phase is confirmed in a temperature range above $T_{\rm C}$. The compound undergoes a crossover from the first to second-order ferrimagnetic transformation, as evidenced by the Arrott plots, scaling of the universal entropy curve, and field-dependent magnetic entropy change. The maximum of entropy change is 3 J/kg$\cdot$K for $\Delta H = 7$ T at ${T}_{\rm C}$, and a broadening of the entropy peak with increasing magnetic field indicates a field-induced transition above $T_{\rm C}$. The analysis of the magnetic entropy change using the Landau theory reveals the second-order phase transition and indicates that the magnetocaloric properties of CaBaCo$_{4}$O$_{7}$ are dominated by the magnetoelastic coupling and electron interaction. The corresponding values of refrigerant capacity and relative cooling power are estimated to be 33 J/kg and 42 J/kg, respectively.  相似文献   

3.
Yan Zhang 《中国物理 B》2022,31(7):77501-077501
HoBi single crystal and polycrystalline compounds with NaCl-type structure are successfully obtained, and their magnetic and magnetocaloric properties are studied in detail. With temperature increasing, HoBi compound undergoes two magnetic transitions at 3.7 K and 6 K, respectively. The transition temperature at 6 K is recognized as an antiferromagnetic-to-paramagnetic (AFM-PM) transition, which belongs to the first-order magnetic phase transition (FOMT). It is interesting that the HoBi compound with FOMT exhibits good thermal and magnetic reversibility. Furthermore, a large inverse and normal magnetocaloric effect (MCE) is found in HoBi single crystal in the $H|| [100]$ direction, and the positive $\Delta S_{\rm M}$ peak reaches 13.1 J/kg$\cdot$K under a low field change of 2 T and the negative $\Delta S_{\rm M}$ peak arrives at $-18 $ J/kg$\cdot$K under a field change of 5 T. These excellent properties are expected to be applied to some magnetic refrigerators with special designs and functions.  相似文献   

4.
Yong Li 《中国物理 B》2022,31(8):87103-087103
The crystal structure, martensitic transformation and magnetocaloric effect have been studied in all-$d$-metal Ni$_{35}$Co$_{15}$Mn$_{33}$Fe$_{2}$Ti$_{15}$ alloy ribbons with different wheel speeds (15 m/s (S15), 30 m/s (S30), and 45 m/s (S45)). All three ribbons crystalize in B2-ordered structure at room temperature with crystal constants of 5.893(2) Å, 5.898(4) Å, and 5.898(6) Å, respectively. With the increase of wheel speed, the martensitic transformation temperature decreases from 230 K to 210 K, the Curie temperature increases slightly from 371 K to 378 K. At the same time, magnetic entropy change ($\Delta S_{\rm m}$) is also enhanced, as well as refrigeration capacity ($RC$). The maximum $\Delta S_{\rm m}$ of 15.6(39.7) J/kg$\cdot$K and $RC$ of 85.5 (212.7) J/kg under $\Delta H = 20$ (50) kOe (1 ${\rm Oe}=79.5775$ A$\cdot$m$^{-1}$) appear in S45. The results indicate that the ribbons could be the candidate for solid-state magnetic refrigeration materials.  相似文献   

5.
6.
We have studied the magnetic and magnetocaloric properties of the Er3 Co compound,which undergoes ferromagnetic ordering below the Curie temperature TC = 13 K.It is found by fitting the isothermal magnetization curves that the Landau model is appropriate to describe the Er3 Co compound.The giant magnetocaloric effect(MCE) without hysteresis loss around T C is found to result from the second-order ferromagnetic-to-paramagnetic transition.The maximal value of magnetic entropy change is 24.5 J/kg.K with a refrigerant capacity(RC) value of 476 J/kg for a field change of 0-5 T.Large reversible MEC and RC indicate the potentiality of Er3 Co as a candidate magnetic refrigerant at low temperatures.  相似文献   

7.
Magnetic properties and magnetic entropy changes in LaFe$_{11.5}$Si$_{1.5}$ have been investigated by partially substituting Pr by La. It is found that La$_{1 - x}$Pr$_{x}$Fe$_{11.5}$Si$_{1.5}$ compounds remain cubic NaZn$_{13}$-type structures even when the Pr content is increased to 0.5, i.e. $x = 0.5$. Substitution of Pr for La leads to a reduction in both the crystal constant and the Curie temperature. A stepwise magnetic behaviour in the isothermal magnetization curves is observed, indicating that the characteristic of the itinerant electron metamagnetic (IEM) transition above $T_{\rm C}$ becomes more prominent with the Pr content increasing. As a result, the magnetic entropy change is remarkably enhanced from 23.0 to 29.4\,J/kg$\cdot$K as the field changes from 0 to 5\,T, with the value of $x$ increasing from 0 to 0.5. It is more attractive that the magnetic entropy changes for all samples are shaped into high plateaus in a wide range of temperature, which is highly favourable for Ericsson-type magnetic refrigeration.  相似文献   

8.
沈俊  王芳  李养贤  孙继荣  沈保根 《中国物理》2007,16(12):3853-3857
Magnetic properties and magnetocaloric effects of Tb6Co1.67Si3 have been investigated by magnetization measurement. This compound is of a hexagonal Ce$_{6}$Ni$_{2}$Si$_{3}$-type structure with a saturation magnetization of 187\,emu/g at 5\,K and a reversible second-order magnetic transition at Curie temperature $T_{\rm C} = 186$\,K. A magnetic entropy change $\Delta S = 7$\,J\,$\cdot$\,kg$^{-1}$\,$\cdot$\,K$^{-1}$ is observed for a magnetic field change from 0 to 5\,T. A large value of refrigerant capacity (RC) is found to be 330\,J/kg for fields ranging from 0 to 5\,T. The large RC, the reversible magnetization around $T_{\rm C}$ and the easy fabrication make the Tb6Co1.67Si3 compound a suitable candidate for magnetic refrigerants in a corresponding temperature range.  相似文献   

9.
Effects of Nd-doping on the magnetic properties and magnetocaloric effects (MCEs) of NdxLa1-xFe11.5Al1.5 have been investigated. Substitution of Nd leads to a weakening of the antiferromagnetic (AFM) coupling and an enhancement of the ferromagnetic (FM) coupling. This in turn results in a complex magnetic behaviour for Nd0.2La0.8Fe11.5Al1.5 characterized by the occurrence of two phase transitions at ~188 K (PM AFM) and ~159 K (AFM-FM). As a result, a table-like MCE (9 J/kg.K) is found in a wide temperature range (160-185 K) for a field change of 0-5T around the transition temperature, as evidenced by both the magnetic and calorimetric measurements. Based on the analysis of low-temperature heat capacity, it is found that the AFM-FM phase transition modifies the electron density significantly, and the major contribution to the entropy change comes from the electronic entropy change.  相似文献   

10.
《中国物理 B》2021,30(5):57503-057503
We used the Jordan–Wigner transform and the invariant eigenoperator method to study the magnetic phase diagram and the magnetization curve of the spin-1/2 alternating ferrimagnetic diamond chain in an external magnetic field at finite temperature. The magnetization versus external magnetic field curve exhibits a 1/3 magnetization plateau at absolute zero and finite temperatures, and the width of the 1/3 magnetization plateau was modulated by tuning the temperature and the exchange interactions. Three critical magnetic field intensities H_(CB), H_(CE) and H_(CS) were obtained, in which the H_(CB) and H_(CE) correspond to the appearance and disappearance of the 1/3 magnetization plateau, respectively, and the higher H_(CS) correspond to the appearance of fully polarized magnetization plateau of the system. The energies of elementary excitation ωσ,k(σ = 1, 2, 3) present the extrema of zero at the three critical magnetic fields at 0 K, i.e., [hω_(3,k)(HCB)]_(min)= 0, [hω_(2,k)(H_(CE))]_(max)= 0 and [hω _(2,k)(H_(CS))]_(min)= 0, and the magnetic phase diagram of magnetic field versus different exchange interactions at 0 K was established by the above relationships. According to the relationships between the system's magnetization curve at finite temperatures and the critical magnetic field intensities, the magnetic field-temperature phase diagram was drawn. It was observed that if the magnetic phase diagram shows a three-phase critical point, which is intersected by the ferrimagnetic phase, the ferrimagnetic plateau phase, and the Luttinger liquid phase, the disappearance of the1/3 magnetization plateau would inevitably occur. However, the 1/3 magnetization plateau would not disappear without the three-phase critical point. The appearance of the 1/3 magnetization plateau in the low temperature region is the macroscopic manifestations of quantum effect.  相似文献   

11.
<正>Magnetic properties and magnetocaloric effects of La1-xRxFe1105 Si9105)(R=Pr,(0≤x≤0.5);R = Ce and Nd, (0≤x≤0.3)) compounds are investigated.Partially replacing La with R = Ce,Pr and Nd in La1-xRxFe11.5Si1.5 leads to a reduction in Curie temperature due to the lattice contraction.The substitution of R for La causes an enhancement in field-induced itinerant electron metamagnetic transition,which leads to a remarkable increase in magnetic entropy change△Sm and also in hysteresis loss.However,a high effective refrigerant capacity RCeff is still maintained in La1-xRxFe11.5Si1.5.In the present samples,a large△Sm and a high RCeff have been achieved simultaneously.  相似文献   

12.
方明卫  何建超  胡战超  包芸 《中国物理 B》2022,31(1):14701-014701
We study the characteristics of temperature fluctuation in two-dimensional turbulent Rayleigh–Benard convection in′a square cavity by direct numerical simulations.The Rayleigh number range is 1×108≤Ra≤1×1013,and the Prandtl number is selected as Pr=0.7 and Pr=4.3.It is found that the temperature fluctuation profiles with respect to Ra exhibit two different distribution patterns.In the thermal boundary layer,the normalized fluctuationθrms/θrms,max is independent of Ra and a power law relation is identified,i.e.,θrms/θrms,max~(z/δ)0.99±0.01,where z/δis a dimensionless distance to the boundary(δis the thickness of thermal boundary layer).Out of the boundary layer,when Ra≤5×109,the profiles ofθrms/θrms,max descend,then ascend,and finally drop dramatically as z/δincreases.While for Ra≥1×1010,the profiles continuously decrease and finally overlap with each other.The two different characteristics of temperature fluctuations are closely related to the formation of stable large-scale circulations and corner rolls.Besides,there is a critical value of Ra indicating the transition,beyond which the fluctuation hθrmsiV has a power law dependence on Ra,given by hθrmsiV~Ra?0.14±0.01.  相似文献   

13.
魏益焕 《物理学报》2019,68(6):60402-060402
本文考虑带有黑洞视界和宇宙视界的Kiselev时空.研究以黑洞视界和宇宙视界为边界的系统的热力学性质.统一地给出了两个系统的热力学第一定律;在黑洞视界半径远小于宇宙视界半径的情况下,近似地计算了通过宇宙视界和黑洞视界的热能.然后,探讨Kiselev时空的物质吸积特性.在吸积能量密度正比于背景能量密度的条件下给出黑洞的吸积率,讨论了黑洞吸积率与暗能量态方程参数的关系.  相似文献   

14.
刘波  宋志棠  张挺  封松林  干福熹 《中国物理》2004,13(7):1167-1170
In this paper, Ag_{11}In_{12}Te_{26}Sb_{51} phase change semiconductor films have been prepared by dc sputtering. The crystallization behaviour of amorphous Ag_{11}In_{12}Te_{26}Sb_{51} thin films was investigated by using differential scanning calorimetry and x-ray diffraction. It was found that the crystallization temperature is about 483K and the melting temperature is 754.8K and the activation energy for crystallization, E_a, is 2.07eV. The crystalline Ag_{11}In_{12}Te_{26}Sb_{51} films were obtained using initializer. The initialization conditions have a great effect on the sheet resistance of Ag_{11}In_{12}Te_{26}Sb_{51} films. We found that the effect of the initialization condition on the sheet resistance can be ascribed to the crystallinity of Ag_{11}In_{12}Te_{26}Sb_{51} films. The sheet resistance of the amorphous (R_{amo}) film is found to be larger than 1×10^6Ω and that of the crystalline (R_{cry}) film lies in the range from about 10^3 to 10^4Ω. So we have the ratio R_{amo}/R_{cry}=10^2~10^3, which is sufficiently large for application in memory devices.  相似文献   

15.
This paper reports that low-temperature heat capacities of 4-(2-aminoethyl)-phenol (C8H11NO) are measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 400 K. A polynomial equation of heat capacities as a function of the temperature was fitted by the least square method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15K were calculated and tabulated at the interval of 5K. The energy equivalent, εcalor, of the oxygen-bomb combustion calorimeter has been determined from 0.68g of NIST 39i benzoic acid to be εcalor=(14674.69±17.49)J·K^-1. The constant-volume energy of combustion of the compound at T=298.15 K was measured by a precision oxygen-bomb combustion calorimeter to be ΔcU=-(32374.25±12.93)J·g^-1. The standard molar enthalpy of combustion for the compound was calculated to be ΔcHm = -(4445.47 ± 1.77) kJ·mol^-1 according to the definition of enthalpy of combustion and other thermodynamic principles. Finally, the standard molar enthalpy of formation of the compound was derived to be ΔfHm(C8H11NO, s)=-(274.68 ±2.06) kJ·mol^-1, in accordance with Hess law.  相似文献   

16.
The analytical transfer matrix method (ATMM) is applied to calculating the critical radius $r_{\rm c}$ and the dipole polarizability $\alpha_{\rm d}$ in two confined systems: the hydrogen atom and the Hulth\'{e}n potential. We find that there exists a linear relation between $r_{\rm c}^{1/2}$ and the quantum number $n_{r}$ for a fixed angular quantum number $l$, moreover, the three bounds of $\alpha_{\rm d}$ ($\alpha_{\rm d}^{K}$, $\alpha_{\rm d}^{B}$, $\alpha_{\rm d}^{U}$) satisfy an inequality: $\alpha_{\rm d}^{K}\leq\alpha_{\rm d}^{B}\leq\alpha_{\rm d}^{U}$. A comparison between the ATMM, the exact numerical analysis, and the variational wavefunctions shows that our method works very well in the systems.  相似文献   

17.
The effect of Cr doping on the structural, magnetic and magnetocaloric properties of perovskite manganites La0.75Sr0.25Mn1–x Cr x O3 (x = 0.15, 0.20, and 0.25) has been investigated. Crystalline structure and magnetic properties are investigated by using X-ray powder diffraction and magnetization measurements, respectively. All samples show a single phase and are found to crystallize in the distorted rhombohedral system with \( R\overline{3} \,c \) space group. A monotonous change of Curie temperature (T C), from 314 to 253 K, is observed when content doping increases. Substantial magnetic entropy change reaching 4.20 J/kg K is revealed. Relative cooling power was estimated as well. It was found to reach 289, 323, and 386 J/kg for x = 0.15, 0.20, and 0.25, respectively. Field dependence of the magnetic entropy change showing the power law dependence \( \Delta S_{\rm M} \propto \,\,\left( {\mu_{ 0} \rm H} \right)^{n} \) is also analyzed and discussed.  相似文献   

18.
《中国物理 B》2021,30(7):77302-077302
Two-dimensional electron gases(2 DEGs) formed at the interface between two oxide insulators present a promising platform for the exploration of emergent phenomena.While most of the previous works focused on SrTiO_(3-)based 2 DEGs,here we took the amorphous-ABO_3/KTaO_3 system as the research object to study the relationship between the interface conductivity and the redox property of B-site metal in the amorphous film.The criterion of oxide-oxide interface redox reactions for the B-site metals,Zr,Al,Ti,Ta,and Nb in conductive interfaces was revealed:the formation heat of metal oxide,ⅢH_f~o,is lower than-350 kJ/(mol O) and the work function of the metal Φ is in the range of 3.75 eVΦ 4.4 eV.Furthermore,we found that the smaller absolute value of ⅢH_f~o and the larger value of Φ of the B-site metal would result in higher mobility of the two-dimensional electron gas that formed at the corresponding amorphous-ABO_3/KTaO_3 interface.This finding paves the way for the design of high-mobility all-oxide electronic devices.  相似文献   

19.
We calculate the (parity-violating) spin-rotation angle of a polarized neutron beam through hydrogen and deuterium targets, using pionless effective field theory up to next-to-leading order. Our result is part of a program to obtain the five leading independent low-energy parameters that characterize hadronic parity violation from few-body observables in one systematic and consistent framework. The two spin-rotation angles provide independent constraints on these parameters. Our result for np spin rotation is $\frac{1} {\rho }\frac{{d\varphi _{PV}^{np} }} {{dl}} = \left[ {4.5 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {2g^{\left( {^3 S_1 - ^3 P_1 } \right)} + g^{\left( {^3 S_1 - ^3 P_1 } \right)} } \right) - \left[ {18.5 \pm 1.9} \right] rad MeV^{ - \frac{1} {2}} \left( {g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 2} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right)$\frac{1} {\rho }\frac{{d\varphi _{PV}^{np} }} {{dl}} = \left[ {4.5 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {2g^{\left( {^3 S_1 - ^3 P_1 } \right)} + g^{\left( {^3 S_1 - ^3 P_1 } \right)} } \right) - \left[ {18.5 \pm 1.9} \right] rad MeV^{ - \frac{1} {2}} \left( {g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 2} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right), while for nd spin rotation we obtain $\frac{1} {\rho }\frac{{d\varphi _{PV}^{nd} }} {{dl}} = \left[ {8.0 \pm 0.8} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^1 P_1 } \right)} + \left[ {17.0 \pm 1.7} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^3 P_1 } \right)} + \left[ {2.3 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {3g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 1} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right)$\frac{1} {\rho }\frac{{d\varphi _{PV}^{nd} }} {{dl}} = \left[ {8.0 \pm 0.8} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^1 P_1 } \right)} + \left[ {17.0 \pm 1.7} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^3 P_1 } \right)} + \left[ {2.3 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {3g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 1} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right), where the g (X-Y), in units of $MeV^{ - \frac{3} {2}}$MeV^{ - \frac{3} {2}}, are the presently unknown parameters in the leading-order parity-violating Lagrangian. Using naıve dimensional analysis to estimate the typical size of the couplings, we expect the signal for standard target densities to be $\left| {\frac{{d\varphi _{PV} }} {{dl}}} \right| \approx \left[ {10^{ - 7} \ldots 10^{ - 6} } \right]\frac{{rad}} {m}$\left| {\frac{{d\varphi _{PV} }} {{dl}}} \right| \approx \left[ {10^{ - 7} \ldots 10^{ - 6} } \right]\frac{{rad}} {m} for both hydrogen and deuterium targets. We find no indication that the nd observable is enhanced compared to the np one. All results are properly renormalized. An estimate of the numerical and systematic uncertainties of our calculations indicates excellent convergence. An appendix contains the relevant partial-wave projectors of the three-nucleon system.  相似文献   

20.
This paper calculates the transition wavelengths and probabilities of the two-electron and one-photon (TEOP) transition from the $(3{\rm s}^{-1}_{1/2}4{\rm d}_{j})_{J=1,2}$ to $(3{\rm p}^{-1}_{3/2}4{\rm s}_{1/2})_{J=1}$ and the $(3{\rm p}^{-1}_{1/2}4{\rm s}_{1/2})_{J=1}$ to $(3{\rm d}^{-1}_{j}4{\rm d}_{j'})_{J=1,2}$ for highly charged Ni-like ions with atomic number $Z$ in the range $47\leq Z\leq92$. In the calculations, the multi-configuration Dirac--Fock method and corresponding program packages GRASP92 and REOS99 were used, and the relativistic effects, correlation effects and relaxation effects were considered systematically. It is found that the TEOP transitions are very sensitive to the correlation of electrons, and the probabilities will be enhanced sharply in some special $Z$ regions along the isoelectronic sequence. The present TEOP transition wavelengths are compared with the available data from some previous publications, good agreement is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号