首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 704 毫秒
1.
At the UVSOR Facility, Institute for Molecular Science, the practical use of the synchrotron radiation as a far-infrared light source has started. A spectroscopic system has been constructed at the beam line BL6A1 of UVSOR storage ring, which covers the wavenumber region from 5 to 250 cm–1. The cross sectional diameter of the light beam at the sample position is as small as 3 mm with the angular divergence of about 100 mrad. The system has been made mainly for the transmission and reflection measurements of small samples with small angular divergence by the use of the high brightness of the synchrotron radiation. Examples of observed transmission and reflectivity spectra are shown.  相似文献   

2.
Physical start-up of the new heavy-ion storage accelerator facility has been successfully performed at the Institute of Theoretical and Experimental Physics. Carbon nuclei with an energy of 200 MeV/n are accumulated in the storage ring of the 10-GeV U-10 proton synchrotron, which is converted into an ion accumulator. The accumulation is accomplished using solid-target charge exchange of C4+ ions that are accelerated in the UK booster synchrotron. Thus, non-Liouvillian carbon nucleus accumulation is accomplished experimentally. Our immediate goal is to raise the amount of accumulated nuclei to 2 × 1012, which corresponds to the possibilities of the available facility configuration.  相似文献   

3.
A. Aksoy 《中国物理C(英文版)》2015,39(6):067002-067002
The TAC(Turkish Accelerator Center) project aims to build an accelerator center in Turkey. The first stage of the project is to construct an Infra-Red Free Electron Laser(IR-FEL) facility. The second stage is to build a synchrotron radiation facility named TURKAY, which is a third generation synchrotron radiation light source that aims to achieve a high brilliance photon beam from a low emittance electron beam at 3 Ge V. The electron beam parameters are highly dependent on the magnetic lattice of the storage ring. In this paper a low emittance storage ring for TURKAY is proposed and the beam dynamic properties of the magnetic lattice are investigated.  相似文献   

4.
IKNO (Innovation and KNOwledge) is a proposal for a multi‐user facility based on an electron storage ring optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range, and of broadband incoherent synchrotron radiation ranging from the IR to the VUV. IKNO can be operated in an ultra‐stable CSR mode with photon flux in the terahertz frequency region up to nine orders of magnitude higher than in existing third‐generation light sources. Simultaneously to the CSR operation, broadband incoherent synchrotron radiation up to VUV frequencies is available at the beamline ports. The main characteristics of the IKNO storage and its performance in terms of CSR and incoherent synchrotron radiation are described in this paper. The proposed location for the infrastructure facility is Sardinia, Italy.  相似文献   

5.
The Brazilian synchrotron light source, designed and constructed at LNLS, is composed of a 1.37 GeV electron storage ring and a 120 MeV LINAC for low‐energy injection. It has been commissioned and, in July 1997, reached the design electron beam energy, current and emittance. Seven beamlines (TGM, SGM, SXS, XAFS, XRD, SAXS, PCr) have been constructed in parallel with the electron accelerators. The LNLS synchrotron source was opened to users 1st July, 1997, and is now in operation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The investigation of ultrafast dynamics, taking place on the few to sub‐picosecond time scale, is today a very active research area pursued in a variety of scientific domains. With the recent advent of X‐ray free‐electron lasers (XFELs), providing very intense X‐ray pulses of duration as short as a few femtoseconds, this research field has gained further momentum. As a consequence, the demand for access strongly exceeds the capacity of the very few XFEL facilities existing worldwide. This situation motivates the development of alternative sub‐picosecond pulsed X‐ray sources among which femtoslicing facilities at synchrotron radiation storage rings are standing out due to their tunability over an extended photon energy range and their high stability. Following the success of the femtoslicing installations at ALS, BESSY‐II, SLS and UVSOR, SOLEIL decided to implement a femtoslicing facility. Several challenges were faced, including operation at the highest electron beam energy ever, and achievement of slice separation exclusively with the natural dispersion function of the storage ring. SOLEIL's setup also enables, for the first time, delivering sub‐picosecond pulses simultaneously to several beamlines. This last feature enlarges the experimental capabilities of the facility, which covers the soft and hard X‐ray photon energy range. In this paper, the commissioning of this original femtoslicing facility is reported. Furthermore, it is shown that the slicing‐induced THz signal can be used to derive a quantitative estimate for the degree of energy exchange between the femtosecond infrared laser pulse and the circulating electron bunch.  相似文献   

7.
合肥光源储存环束流软慢加速控制   总被引:1,自引:0,他引:1       下载免费PDF全文
 合肥光源储存环为非满能量注入,束流以200MeV的能量注入到储存环后慢加速到800MeV。介绍了慢加速的理论依据及储存环主电源控制系统的硬件结构,详细描述了束流软慢加速方法中的慢加速表计算及慢加速过程控制。机器运行结果表明:软慢加速方法控制灵活,慢加速过程运行平稳,束流损失很少,能很好地满足合肥光源机器运行和研究的需要。  相似文献   

8.
Construction work on the new MAX IV synchrotron light facility in northeastern Lund, Sweden, began on May 18, 2011. The MAX IV accelerator system will consist of three parts: one 3 GeV injector linac (also used for the production of short X-ray pulses) and two storage rings operated at 1.5 GeV and 3 GeV, respectively. The two-ring concept will allow the production of synchrotron radiation from optimized undulators within a broad spectral region. The 3 GeV ring has an emittance between 0.2 and 0.4 nm rad, depending on the ID configuration, and the emittance of the 1.5 GeV ring is 5 nm rad.  相似文献   

9.
 合肥同步辐射光源现有的注入系统采用1/4能量注入。二期工程改造后,注入系统采用集中布局方案。以改造后的机器为基础,针对合肥同步辐射光源的两组运行模式,探讨实现满能量注入的可行性和实施方案。  相似文献   

10.
平面镜反射率的标定及修正   总被引:2,自引:1,他引:2       下载免费PDF全文
 研究了用同步辐射源标定软X光掠入射平面镜的反射率。实验采用北京同步辐射装置(BSRF)-3W1B束线及反射率计靶室,在50~1 500 eV能区,做了C,Si,Ni和Au材料平面镜在1°~7°掠射角下的反射率标定曲线。由于3W1B束线的单色器采用变间距光栅作色散元件,光栅分光必然存在高次谐波,高次谐波严重影响光源的单色性,从而给平面镜的反射率标定值带来误差。前置滤片虽然能有效抵制高次谐波,但不能完全消除高次谐波。为此,利用透射光栅对光源做了单色性研究,给出高次谐波在不同能区所占光源强度的比例,从而对平面镜反射率标定值做出修正。  相似文献   

11.
M M HAQUE  A MOON  T HIRAI  H YAMADA 《Pramana》2011,76(2):351-355
The tabletop storage ring, 6 MeV MIRRORCLE, is dedicated to hard X-ray imaging as well as far-infrared (FIR) spectroscopy. In spite of low electron energy, the 6 MeV MIRRORCLE generates hard X-rays ranging from 10 keV up to its electron energy and milliwatt order sub-millimetre range FIR rays. Bremsstrahlung is the mechanism for the hard X-ray generation. Images produced with 11× geometrical magnification display a sharply enhanced edge effect when generated using a 25 mm rod electron target. Bright far-infrared is generated in the same way using a conventional synchrotron light source, but with MIRRORCLE the spectral flux is found to be ∼1000 times greater than that of a standard thermal source. Partially coherent enhancement is observed in the case of FIR output.  相似文献   

12.
The construction of CSR (cooling storage ring) which includes a main ring (CSRm) and an experimental ring (CSRe) will be finished at the end of 2005. Heavy ions of carbon to uranium will be accelerated up to 900MeV/u and 400MeV/u at intensity of 108 pps. The HIRFL (heavy ion research facility in Lanzhou) will be used as the injector. For the shielding design of CSR, the secondary neutrons due to the ion beam loss, their spectra and angular distributions were estimated based on the experimental results. The dose equivalent outside the shielding surface and in the surrounding environment and the neutron skyshine dose equivalent were also estimated in this study. The experimental result, neutron yield, spectrum and angular distribution for 400MeV/u 12C+Cu reaction were used for estimating the source term of shielding design. It is found that the most important environmental radiation impact component of CSR is the skyshine neutrons.  相似文献   

13.
The performance of the far‐infrared (FIR) beamline of the 6 MeV tabletop synchrotron light source MIRRORCLE‐6FIR dedicated to far‐infrared spectroscopy is presented. MIRRORCLE‐6FIR is equipped with a perfectly circular optical system (PhSR) placed around the 1 m‐long circumference electron orbit. To illustrate the facility of this light source, the FIR output as well as its spectra were measured. The optimum optical system was designed by using the ray‐tracing simulation code ZEMAX. The measured FIR intensity with the PhSR in place is about five times higher than that without the PhSR, which is in good agreement with the simulation results. The MIRRORCLE‐6FIR spectral flux is compared with a standard thermal source and is found to be 1000 times greater than that from a typical thermal source at ~15 cm?1. It is also observed that the MIRRORCLE‐6FIR radiation has a highly coherent nature. The broadband infrared allows the facility to reach the spectral range from 10 cm?1 to 100 cm?1. MIRRORCLE‐6FIR, owing to a large beam current, the PhSR mirror system, a large dynamic aperture and small ring energy, can deliver a bright flux of photons in the FIR/THz region useful for broadband spectroscopy.  相似文献   

14.
ANKA is a relatively new synchrotron radiation facility at the Forschungszentrum Karlsruhe, a large government research center in the southwest of Germany. The acronym stands for Angstrom Source Karlsruhe. The electron storage ring is 110.4 m in circumference and stores a 2.5 GeV electron beam at a typical current of 200 mA. The facility has been open for users since March 2003.  相似文献   

15.
The 2.0-GeV Pohang light source (PLS) is a third-generation synchrotron light source that is the first such facility in Korea and the fifth in the world. The PLS mainly consisted of a full-energy injection linac and a storage ring. Four kicker magnets are installed in the storage ring tunnel to move the stored beam orbit in the storage ring closer to the injected beam from the beam transfer line. The injected beam then falls into the storage ring beam dynamic aperture. A kicker magnet modulator drives all four kicker magnets to maintain field balance and synchronized kick of the beam. Specification of the kicker magnet modulator is ~6.0-μs-full width, 200-ns flattop width with ±0.2% regulation, ~24-kA peak current, and 10-Hz repetition rate. Two thyratron switches (EEV CX-1536AX) are used in the system. As the inverse voltage is dangerous to thyratron operation, a new surge suppression circuit was developed. The kicker modulator has been operated very reliably since its installation in August 1995. In this article, design, simulation, and experimental results of the kicker magnet modulator are discussed. In addition, measurement result of spatial B-field distribution in the kicker magnet and maximum operating range of kicker magnet are discussed  相似文献   

16.
A proton therapy facility based on a linac injector and a slow-cycling synchrotron is proposed. To obtain good treatments for different cancer types, both the spot scanning method and the double-scattering method are adopted in the facility, whereas the nozzles include both gantry and fixed beam types. The proton accelerator chain includes a synchrotron of 250 MeV in maximum energy, an injector of 7 MeV consisting of an RFQ and a DTL linac, with a repetition rate of 0.5 Hz. The slow extraction using the third-order resonance and together with the RFKO method is considered to be a good method to obtain a stable and more-or-less homogenous beam spill. To benefit the spot scanning method, the extraction energy can be as many as about 200 between 60 MeV and 230 MeV. A new method – the emittance balancing technique of using a solenoid or a quadrupole rotator is proposed to solve the problem of unequal emittance in the two transverse planes with a beam slowly extracted from a synchrotron. The facility has been designed to keep the potential to be upgraded to include the carbon therapy in the future.  相似文献   

17.
ATPF—a dedicated proton therapy facility   总被引:1,自引:0,他引:1  
A proton therapy facility based on a linac injector and a slow-cycling synchrotron is proposed. To obtain good treatments for different cancer types, both the spot scanning method and the double-scattering method are adopted in the facility, whereas the nozzles include both gantry and fixed beam types. The proton accelerator chain includes a synchrotron of 250 MeV in maximum energy, an injector of 7 MeV consisting of an RFQ and a DTL linac, with a repetition rate of 0.5 Hz. The slow extraction using the third-order resonance and together with the RFKO method is considered to be a good method to obtain a stable and more-or-less homogenous beam spill. To benefit the spot scanning 200 between 60 MeV and 230 MeV. A new method method, the extraction energy can be as many as about - the emittance balancing technique of using a solenoid or a quadrupole rotator is proposed to solve the problem of unequal emittance in the two transverse planes with a beam slowly extracted from a synchrotron. The facility has been designed to keep the potential to be upgraded to include the carbon therapy in the future.  相似文献   

18.
The method of resonance depolarization has been used for the absolute energy calibration of storage ring VEPP-4. The beam polarization was measured by the up-down asymmetry of the synchrotron radiation back-scattered on the colliding beam. By scanning the ? resonance with the MD-1 detector, we obtained a massM=9460.59 ±0.12 MeV.  相似文献   

19.
On the day of the 2016 summer solstice, June 21, MAX IV, the new synchrotron radiation facility in Lund, Sweden, will be inaugurated. MAX IV is setting a new standard in terms of emittance, thereby providing beamlines with the best possible brilliance and coherence. At the same time, MAX IV continues a more than three-decades-long successful history of Swedish synchrotron-radiation-based research. The activities at the present MAX-lab, which officially started when the MAX I storage ring opened for users in 1986, have been concluded with a “last beamdump” ceremony for the MAX II and MAX III storage rings on December 13, 2015, Saint Lucy's Day. In Sweden, the winter solstice is celebrated with a festival of light.  相似文献   

20.
Recent advances in storage ring technology pioneered by MAX IV (Sweden) allow synchrotron radiation sources to achieve significantly smaller emittances than those currently in operation. This new, multi-bend achromat technology can thus boost spectral brightness, enabling unprecedented experimental possibilities. The high-energy synchrotron radiation facilities ESRF (France), SPring-8 (Japan), and APS (USA) have settled upgrade plans to improve their storage ring emittance by up to two orders of magnitude at 6 GeV electron energy. PETRA III at DESY has the largest circumference with 2.3 km. As the emittance scales favorably with the storage ring size, an upgrade of PETRA III offers the unique potential to reach a diffraction limit up to X-ray energies of 10 keV. Operating at 6 GeV with an emittance of 10 pmrad, this PETRA IV facility would pave the way for new experimental opportunities, especially for those using high photon energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号