首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In order to study the long-pulsed laser induced damage performance of optical thin films, damage experiments of TiO2/SiO2 films irradiated by a laser with 1 ms pulse duration and 1064 nm wavelength are performed. In the experiments, the damage threshold of the thin films is measured. The damages are observed to occur in isolated spots, which enlighten the inducement of the defects and impurities originated in the films. The threshold goes down when the laser spot size decreases. But there exists a minimum threshold, which cannot be further reduced by decreasing the laser spot size. Optical microscopy reveals a cone-shaped cavity in the film substrate. Changes of the damaged sizes in film components with laser fluence are also investigated. The results show that the damage efficiency increases with the laser fluence before the shielding effects start to act.  相似文献   

2.
Photogeneration of Au nanoparticles in SiO2/TiO2 glass films was carried out by two-photon absorption with a femtosecond pulse laser. Exquisite microdot-arrays of Au with micrometer spatial resolution were achieved by scanning of the focused laser beam. These structures were constructed in SiO2/TiO2 glass films by a sol–gel method. The sol–gel method demonstrated that Au dots microarray are fabricated at any position by two-photon absorption in the glass. The results show the utility of a two-photon absorption technique in the fabrication of complicated patterns with metal particles.  相似文献   

3.
Transparent SiO2 thin films were selectively fabricated on Si wafer by 157 nm F2 laser in N2/O2 gas atmosphere. The F2 laser photochemically produced active O(1D) atoms from O2 molecules in the gas atmosphere; strong oxidation reaction could be induced to fabricate SiO2 thin films only on the irradiated areas of Si wafer. The oxidation reaction was sensitive to the single pulse fluence of F2 laser. The irradiated areas were swelled and the height was approximately 500-1000 nm at the 205-mJ/cm2 single pulse fluence for 60 min laser irradiation. The fabricated thin films were analytically identified to be SiO2 by the Fourier-transform IR spectroscopy. The SiO2 thin films could be also removed by subsequent chemical etching to fabricate micro-holes 50 nm in depth on Si wafer for microfabrication.  相似文献   

4.
The crystallization dynamics of as-deposited amorphous Ge2Sb2Te5 films induced by nano- and picosecond single laser pulse irradiation is studied using in situ reflectivity measurements. Compared with nanosecond laser pulse, the typical recalescence phenomenon did not appear during the picosecond laser pulse-induced crystallization processes when the pulse fluence gradually increased from crystallization to ablation threshold. The absence of melting and recalescence phenomenon significantly decreased the crystallization time from hundreds to a few tens of nanoseconds. The role of pulse duration time scale on the crystallization process is qualitatively analyzed.  相似文献   

5.
We study the surface chemicals and structures of aluminum plates irradiated by scanning femtosecond laser pulses in air for a wide range of laser fluence from 0.38 to 33.6 J/cm2. X-ray photoelectron spectroscopy and X-ray diffraction analyses indicate clearly that crystalline anorthic Al(OH)3 is formed under femtosecond laser pulse irradiation. Besides aluminum hydroxide, crystalline Al2O3 is also found in the samples irradiated at high laser fluence. Field emission scanning electron microscopy demonstrates that the surfaces of the samples irradiated with low laser fluence are colloidal-like and that nanoparticles with a few nanometers in size are embedded in glue-like substances. For high laser fluence irradiated samples, the surfaces are highly porous and covered by nanoparticles with uniform size of less than 20 nm.  相似文献   

6.
Titanium dioxide (TiO2) films were irradiated with a femtosecond laser beam to alter their electrical resistances. The TiO2 film was produced by aerosol beam deposition. The wavelength, pulse duration, and repetition rate of the femtosecond laser scanned across the sample surface were 800 nm, 100 fs, and 1 kHz, respectively. By attenuating the laser fluence on the TiO2 film, a range was found in which the electrical resistance of the TiO2 film was varied even though the morphology of the film surface was not changed.  相似文献   

7.
研究了在308nm准分子激光辐照下,V2O5非晶薄膜性质的变化-利用X射线衍射、X射线光电子能谱及扫描电子显微镜等多种测试方法进行了分析比较,确定V2O5非晶薄膜性质的变化是由于高功率密度的准分子激光作用,造成V2O5薄膜的快速升温熔化和快速冷凝重构,使其中的氧产生缺位,引起化学配比偏离所致- 关键词:  相似文献   

8.
Damage threshold of crystals SiO2 and YAG against 60-900 fs, 800 nm laser pulses are reported. The breakdown mechanisms were discussed based on the double-flux model and Keldysh theory. We found that impact ionization plays the important role in the femtosecond laser-induced damage in crystalline SiO2, while the roles of photoionization and impact ionization in YAG crystals depend on the laser pulse durations.  相似文献   

9.
Excimer laser ablation at 308 nm has been used to texture the surfaces of a variety of materials of interest for optoelectronic and biotechnological applications. Using a range of pre- and post-processing methods, we are able to produce nano-, micro- and meso-scale features over large areas rapidly in materials such as crystalline Si, porous silicon and TiO2. Texturing of porous silicon leads to the growth of crystalline dendritic structures, which distinguishes them dramatically from the conical pillars formed from crystalline silicon. Regular arrays of Si microdots are formed by irradiating a Si surface pre-covered with a Cr thin film grating. Nano-crystalline porous TiO2 films are easily ablated or compacted with laser irradiation. However, at low enough laser fluence, surface roughening without complete loss of porosity is possible.  相似文献   

10.
Thin films of La0.6Ca0.4CoO3 were grown by pulsed laser ablation with nanosecond and femtosecond pulses. The films deposited with femtosecond pulses (248 nm, 500 fs pulse duration) exhibit a higher surface roughness and deficiency in the cobalt content compared to the films deposited with nanosecond pulses (248 nm, 20 ns pulse duration). The origin of these pronounced differences between the films grown by ns and fs ablation has been studied in detail by time-resolved optical emission spectroscopy and imaging. The plumes generated by nanosecond and femtosecond ablation were analyzed in vacuum and in a background pressure of 60 Pa of oxygen. The ns-induced plume in vacuum exhibits a spherical shape, while for femtosecond ablation the plume is more elongated along the expansion direction, but with similar velocities for ns and fs laser ablation. In the case of ablation in the background gas similar velocities of the plume species are observed for fs and ns laser ablation. The different film compositions are therefore not related to different kinetic energies and different distributions of various species in the plasma plume which has been identified as the origin of the deficiency of species for other materials.  相似文献   

11.
TiO2 film of around 850 nm in thickness was deposited on a soda-lime glass by PVD sputtering and irradiated using one pulse of krypton-fluorine (KrF) excimer laser (wavelength of 248 nm and pulse duration of 25 ns) with varying fluence. The color of the irradiated area became darker with increasing laser fluence. Irradiated surfaces were characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Surface undergoes thermal annealing at low laser fluence of 400 and 590 mJ/cm2. Microcracks at medium laser fluence of 1000 mJ/cm2 are attributed to surface melting and solidification. Hydrodynamic ablation is proposed to explain the formation of micropores and networks at higher laser fluence of 1100 and 1200 mJ/cm2. The darkening effect is explained in terms of trapping of light in the surface defects formed rather than anatase to rutile phase transformation as reported by others. Controlled darkening of TiO2 film might be used for adjustable filters.  相似文献   

12.
Layers of the metastable, amorphous HAlO are synthesized by chemical vapor deposition from the molecular compound tert-butoxyalane ([tBu-O-AlH2]2). At temperatures above 500 °C, these layers transform to biphasic Al·Al2O3 due to the elimination of di-hydrogen. The interaction of HAlO films with short laser pulses causes partial transformation of amorphous HAlO into nano-crystalline Al·Al2O3. Using an interference pattern of two coherent high-power Nd:YAG laser beams produces local and periodic heating, inducing crystallization at equally distant lines in the HAlO layer. Depending on the laser fluence, different morphologies and different amounts of crystalline phases are obtained. In this study, the surface morphology and the distribution of crystalline phases of the structured samples are analyzed using SEM, FIB and TEM. The two-dimensional structures consist of periodic variations of morphology, chemical composition, and phase identity with a well-defined long-range order. When bio-functionalized, the structured samples may be used as carriers for structurally controlled cell-cultivation.  相似文献   

13.
Unimolecular multiple-photon absorption cross sections are measured for SF6 for both single and multiple longitudinal mode CO2 laser pulses at three different frequencies over a four-decade range of energy fluence. The results indicate only a weak dependence on pulse mode structure for fluence levels corresponding to as little as 0.02 photons absorbed per molecule.  相似文献   

14.
Selective laser patterning of thin films in a multilayered structure is an emerging technology for process development and fabrication of optoelectronics and microelectronics devices. In this work, femtosecond laser patterning of electrochromic Ta0.1W0.9Ox film coated on ITO glass has been studied to understand the selective removal mechanism and to determine the optimal parameters for patterning process. A 775 nm Ti:sapphire laser with a pulse duration of 150 fs operating at 1 kHz was used to irradiate the thin film stacks with variations in process parameters such as laser fluence, feedrate and numerical aperture of objective lens. The surface morphologies of the laser irradiated regions have been examined using a scanning electron microscopy and an optical surface profiler. Morphological analysis indicates that the mechanism responsible for the removal of Ta0.1W0.9Ox thin films from the ITO glass is a combination of blistering and explosive fracture induced by abrupt thermal expansion. Although the pattern quality is divided into partial removal, complete removal, and ITO film damage, the ITO film surface is slightly melted even at the complete removal condition. Optimal process window, which results in complete removal of Ta0.1W0.9Ox thin film without ablation damage in the ITO layer, have been established. From this study, it is found that focusing lens with longer focal length is preferable for damage-free pattern generation and shorter machining time.  相似文献   

15.
Laser radiation is used both for the deposition of the laser active thin films and for the micro structuring to define wave guiding structures for the fabrication of waveguide lasers. Thin films of crystalline and amorphous neodymium doped Gd3Ga5O12 are grown on single crystal yttrium aluminium garnet by pulsed laser deposition using excimer laser radiation.Manufacturing of the laser active waveguides by micro structuring is done using femtosecond laser ablation of the deposited films. The structural and optical properties of the films and the morphology of the structured waveguides are determined in view of the design and the fabrication of compact and efficient diode pumped waveguide lasers. The resulting waveguides are polished, provided with resonator mirrors, pumped using diode lasers and the waveguide lasers are characterized. The spectroscopic properties of the amorphous waveguide are investigated and an infrared waveguide laser is demonstrated. To our knowledge, there have been no reports by other groups of the successful operation of a structured waveguide laser fabricated by this technique or of a waveguide laser made from amorphous neodymium doped Gd3Ga5O12.  相似文献   

16.
The crystalline properties of Ta2O5 thin films deposited by an off-axis aperture-installation-type pulsed laser deposition technique are investigated and the results are compared with the results for films deposited by the conventional on-axis technique. No significant difference in the substrate temperature dependence is seen between films deposited on-axis or off-axis at a pulse repetition frequency of 30 Hz. When the repetition frequency is lowered, the degree of c-axis orientation is increased in both films. This tendency is more pronounced in the off-axis films. Therefore it is found that the off-axis aperture-installation-type pulsed laser deposition technique is effective not only for decreasing the density of droplets, but also for obtaining more highly c-axis-oriented crystalline films.  相似文献   

17.
We provide guidelines to femtosecond laser users to select ad hoc laser parameters, namely the fluence and pulse duration, in the context of the development of ablation processes at the surface of dielectrics using single femtosecond pulses. Our results and discussion are based on a comprehensive experimental and theoretical analysis of the energy deposition process at the surface of fused silica samples and of their postmortem ablation characteristics, in the range of intensities from 1013 to 1015 W/cm2. We show experimentally and numerically that self-induced plasma transient properties at the pulse timescale dramatically determine the efficiency of energy deposition and affect the resulting ablation morphology. In practice, we determine that the precise measurement of two characteristic fluence values, namely the laser-induced ablation threshold F th,LIAT and the fluence F opt for maximum ablation efficiency, are only required to qualify the outcomes of laser ablation at the surface of a dielectric in an extended range of applied fluence.  相似文献   

18.
Oriented crystalline Pb(ZrxTi1-x)O3 (x=0.53) (PZT) thin films were deposited on metallized glass substrates by pulsed laser deposition (1060-nm wavelength Nd:YAG laser light, 10-ns pulse duration, 10-Hz repetition rate, 0.35-J/pulse and 25-J/cm2 laser fluence), from a commercial target at substrate temperatures in the range 380-400 °C. Thin films of 1-3 7m were grown on Au(111)/ Pt/NiCr/glass substrates with a rate of about 1 Å/pulse on an area of 1 cm2. The deposited PZT films with perovskite structure were oriented along the (111) direction, as was revealed from X-ray diffraction spectra. Fourier transform infrared spectroscopy (FTIR) was performed on different PZT films so that their vibrational modes could be determined. Piezoelectric d33 coefficients up to 30 pC/N were obtained on as-deposited films. Ferroelectric hysteresis loops at 100 Hz revealed a remanent polarization of 20 7C/cm2 and a coercive field of 100 kV/cm.  相似文献   

19.
Bi2Te3 is one of the most used materials for thermoelectric applications at ambient temperature. An improvement of thermoelectric performances through a suitable modification of electron and phonon transport mechanisms is predicted for low dimensional or nanostructured systems, but this requires a control of the material structure down to the nanoscale. We show that pulsed laser deposition provides control on film composition, phase and structure, necessary for a comprehension of the relationship between structure and thermoelectric properties. We have explored the role of deposition temperature, background inert gas type and pressure, laser fluence and target-to-substrate distance and we found the experimental condition ranges to obtain crystalline films containing the Bi2Te3 phase only, by comparing energy dispersive X-ray spectroscopy, Raman spectroscopy and X-ray diffraction analysis. Variations of substrate temperature and deposition gas pressure prove to be crucial also for the control of film morphology and crystallinity. Substrate type has no influence on film stoichiometry and crystallinity, but highly oriented growth can be achieved on mica due to van der Waals epitaxy.  相似文献   

20.
Vanadium dioxide shows a passive and reversible change from a monoclinic insulator phase to a metallic tetragonal rutile structure when the sample temperature is close to and over 68 °C. As a kind of functional material, VO2 thin films deposited on fused quartz substrates were successfully prepared by the pulsed laser deposition (PLD) technique. With laser illumination at 400 nm on the obtained films, the phase transition (PT) occurred. The observed light-induced PT was as fast as the laser pulse duration of 100 fs. Using a femtosecond laser system, the relaxation processes in VO2 were studied by optical pump-probe spectroscopy. Upon a laser excitation an instantaneous response in the transient reflectivity and transmission was observed followed by a relatively longer relaxation process. The alteration is dependent on pump power. The change in reflectance reached a maximum value at a pump pulse energy between 7 and 14 mJ/cm2. The observed PT is associated with the optical interband transition in VO2 thin film. It suggests that with a pump laser illuminating on the film, excitation from the dθ,? - state of valence band to the unoccupied excited mixed dθ,?-π* - state of the conduction band in the insulator phase occurs, followed by a resonant transition to an unoccupied excited mixed dθ,?-π* - state of the metallic phase band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号