首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 146 毫秒
1.
利用发射光谱法对金属管内形成的稳定氩氮直流辉光等离子体进行了诊断。通过对等离子体发射光谱谱线的研究确定了等离子体中的活性粒子成分;根据氩原子的玻尔兹曼曲线斜率法计算了等离子体中的电子激发温度;采用氮分子第二正带系跃迁(C3ΠuB3Πg)的发射谱线计算了等离子体中的氮分子振动温度;研究了电子激发温度和氮分子振动温度随压强的变化特征。研究结果表明,在20 Pa下产生的Ar60%+N240%直流辉光等离子体中,活性成分主要是Ar原子、Ar离子、N2的第二正带系跃迁(C3ΠuB3Πg)和N+2的第一负带系跃迁(B2Π+uX2Σ+g);电子激发温度约为(15 270±250)K;氮分子(C3Πu)振动温度约为(3 290±100)K;随着压强的增加电子激发温度、分子振动温度逐渐降低。文章的研究结果对细长金属管内表面改性研究具有重要的意义。  相似文献   

2.
采用板-板式电极结构在大气压氮气中成功地获得了具有工业应用前景的大面积均匀介质阻挡放电等离子体。利用发射光谱技术测量了N2(C3ΠuB3Πg)和N2+(B2Σ+uX2Σ+g 0-0 391.4 nm)的发射光谱,并研究了应用电压和驱动频率对N2(C3ΠuB3Πg)和N2+(B2Σ+uX2Σ+g 0-0 391.4 nm)发射光谱强度的影响。结果表明,当应用电压小于6 kV时,N2(C3ΠuB3Πg)和N2+(B2Σ+uX2Σ+ g0-0 391.4 nm)的发射光谱强度随应用电压增大变化较小,进一步升高应用电压时,等离子体发射光谱强度陡然增强。本文还讨论了激发态N+2(B2Σ+u)离子在纯N2和He+N2混合气体中介质阻挡大气压均匀介质阻挡放电下的主要产生机制。  相似文献   

3.
在氩气和空气混合气体介质阻挡放电中,首次发现了团簇六边形斑图。运用发射光谱法,研究了此斑图中单个团簇的三种等离子体参数:分子振动温度、分子转动温度以及电子的平均能量随空气含量的变化。实验通过测量氮分子光谱并采用氮分子第二正带系(C3ΠuB 3Πg)计算了振动温度;同时采集氮分子离子(N+2)的第一负带系(B 2Σ+uX 2Σ+g)计算转动温度。利用氮分子离子391.4 nm和激发态的氮分子337.1 nm两条发射谱线的相对强度之比,作为研究电子平均能量的变化的依据。结果显示,当混合气体中空气含量从16%逐渐增大到24%时,三种等离子体参数均逐渐增大。  相似文献   

4.
利用发射光谱法,在氮气环境下研究了圆柱型空心阴极放电条纹的特性。测量得到了气压为20 Pa,放电电流为1.3 mA时条纹区的发射光谱,结果表明发射光谱主要为氮分子的第一正带系(B3ПgA3Пu)和 第二正带系(C3ПuB3Пg )。利用双原子光谱发射理论,计算得到了氮分子振动温度的空间分布特性。结果表明光谱线强度呈周期性分布,明纹中心处的谱线强度高于暗纹中心处的谱线强度。明纹中心处的N2分子振动温度为3 500~4 400 K,并且从阴极到阳极,明纹中心处光谱线强度和分子振动温度逐渐下降。同时测量得到了放电电流为1.0和1.5 mA时的发光条纹特性,研究了放电电流对条纹特性的影响。随着放电电流的增加,明纹中心处的分子振动温度升高,条纹间距增加。另外,利用测量得到的发光条纹,计算得到了条纹区的平均约化电场强度为44~49 m-1·Pa-1,并且由阴极向阳极逐渐降低。对于揭示气体放电中发光条纹的形成机理和促进空心阴极放电的稳定性有重要的参考价值。  相似文献   

5.
压强对空气/氩气介质阻挡放电中等离子体温度的影响   总被引:1,自引:0,他引:1  
使用水电极介质阻挡放电装置,在氩气和空气的混合气体放电中,利用发射光谱法,研究了电子激发温度和分子振动温度随气体压强的变化关系。通过氩原子763.51 nm(2P6→1S5)和772.42 nm(2P6→1S3)两条谱线强度比法计算电子激发温度;通过氮分子第二正带系(C3ΠuB3Πg)的发射谱线计算氮分子的振动温度;对氮分子离子391.4 nm和激发态的氮分子337.1 nm两条发射谱线的相对强度进行了测量,以进一步研究电子能量的变化。实验表明,随着压强从20 kPa增大到60 kPa, 电子激发温度减小,分子振动温度减小, 氮分子离子谱线与激发态的氮分子谱线强度之比减小。  相似文献   

6.
利用介质阻挡沿面放电装置,在低气压空气中实现了辉光放电模式。利用光电倍增管对放电发光信号进行检测,发现外加电压每半周期出现一个发光脉冲,并且正负半周期的光脉冲是不对称的。利用Photoshop软件处理放电的照片,研究发现平行于高压电极不同位置的发光强度基本相同,然而距离高压电极越远,发光强度减小。放电中总电场由外加电场和电介质积累的壁电荷电场共同决定,确定该电场具有重要意义。通过分析放电的发射光谱中N+2(B 2Σ+uX 2Σ+g)谱线391.4 nm和N2的第二正带系(C 3ΠuB 3Πg)谱线337.1 nm的比值,可以定性地说明电场的分布。研究发现电场在高压电极附近较大而远离高压电极处较小。这些研究结果对沿面放电的数值模拟和工业应用具有重要的价值。  相似文献   

7.
空气介质阻挡放电不同放电模式的光谱特性   总被引:1,自引:0,他引:1  
采用光谱方法,研究了空气介质阻挡放电中流光向类辉光转变时电子能量的变化。利用氮分子第二正带系(C3ΠuB3Πg)的发射谱线,测量了氮分子(C3Πu)的振动温度。通过考察氮分子离子391.4 nm谱线强度与氮分子337.1 nm谱线强度之比,研究了电子平均能量的变化。结果表明,流光向类辉光转变时,氮分子(C3Πu)的振动温度激增,氮分子离子391.4 nm相对谱线强度突增,表明类辉光放电模式中电子能量比流光放电模式中电子能量高很多。实验还发现,气隙间距不同,这两种放电模式转变所对应的转变气压不同,但转变气压与气隙间距的乘积值保持不变。  相似文献   

8.
提出了一种构造解析势能函数的新方法,由此得到了一种既适用于中性双原子分子又适用于带电双原子分子离子的解析势能函数。本文用八种基本类型的双原子分子——同核中性基态双原子分子Na2-X1Σ+g,同核中性激发态双原子分子C2-A1Πu,同核带电基态双原子分子离子He+2-X2Σ+u,同核带电激发态双原子分子离子N+2-B2Σ+u,异核中性基态双原子分子NaLi-X1Σ+g,异核中性激发态双原子分子BH-B1Σ+,异核带电基态双原子分子离子(BC)--X3Π,异核带电激发态双原子分子离子(CS)+-A2Π等共21个算例对势能函数进行了验证并与RKR (Rydberg-Klein-Rees)实验数据进行了比较,计算结果与RKR数据符合很好。  相似文献   

9.
少量氩气对大气介质阻挡放电光谱的增强   总被引:5,自引:0,他引:5  
采用双水电极介质阻挡放电装置,测量了大气介质阻挡放电的光谱,并研究了加入少量氩气后光谱的变化。在300~800 nm波长范围内,发现了氮分子(C3Πu(v′=0)→B3Πg(v″=0~4))的光谱和氮原子(4d4D7/2→3p4P01/2)的光谱。在大气中加入少量氩气后,击穿电压明显降低,在相同电压条件下,氮分子光谱线和氮原子光谱线强度都增强。同时,加入氩气后上述谱线的半宽度明显加大。由于谱线的Stark加宽与电子密度成正比, 说明加入氩气后等离子体的电子密度增大, 使得电子碰撞激发氮分子及氮原子的概率增大,激发到较高激发态的氮原子或氮分子增多,从而使光谱强度增强。  相似文献   

10.
脉冲流光放电产生的大于等于11.2 eV的高能电子能将处于基态的氮分子激发到N2(C3Πu)态,测试脉冲流光放电时的N2(C3ΠuB3Πg)发射光谱相对强度可以得出脉冲流光放电产生的高能电子的密度。实验在室温常压下研究了空气中线-板式脉冲流光放电脱硫反应器内高能电子密度分布情况,并研究了脉冲电压、反应器的线线间距对反应器内高能电子密度分布的影响。实验结果表明,反应器内的高能电子主要集中在放电线附近高电场区内,随着离放电线的距离增大,高能电子密度减小;脉冲电压对高能电子密度有很大影响,随着电压的升高,高能电子密度基本呈线性增大;线板间距固定,线线间距为线板间距的0.6~1倍时,反应器内高能电子密度分布较为均匀。  相似文献   

11.
氩气含量对空气介质阻挡放电发射光谱的影响   总被引:1,自引:0,他引:1  
利用介质阻挡放电实验系统测量了空气介质阻挡放电的发射光谱,研究了氩气含量对空气介质阻挡放电发射光谱的影响。在280~500 nm波长范围内,发现了氮分子第二正带系N2(3Π-3Π)的谱线和氮分子离子的第一负带系N+2(B 3Σ-X 2Σ)的谱线。在相同条件下加入10%氩气后,起始放电电压由26 kV降低到23 kV,介质阻挡放电和发射光谱强度都增强,谱线的半宽明显加大。随氩气含量的增加,各个氮分子第二正带系谱线强度的变化趋势不同,而两条氮分子离子第一负带系谱线391.44和427.81 nm的光谱强度都是降低的。  相似文献   

12.
利用水电极介质阻挡放电装置,在氩气和空气的混合气体中,首次观察到了由点和线组成的八边形结构。采用发射光谱法,研究了八边形结构中的点和线的等离子体温度随压强的变化关系。利用氮分子第二正带系(C3ΠuB3Πg)的发射谱线,计算了点和线的分子振动温度;通过氮分子离子391.4 nm和氮分子394.1 nm两条发射谱线的相对强度比,研究了点和线的电子平均能量大小变化;利用氩原子763.26 nm(2P6→1S5)和772.13 nm(2P2→1S3)两条谱线强度比法,得到了点和线的电子激发温度。实验发现:在同一压强条件下,线比点的分子振动温度、电子平均能量以及电子激发温度均高;随着气体压强从40 kPa增大到60 kPa,点和线的分子振动温度、电子平均能量以及电子激发温度均减小。  相似文献   

13.
氩气含量对介质阻挡放电中单丝等离子体温度的影响   总被引:1,自引:0,他引:1  
在空气与氩气组成的混合气体放电中,首次研究了由中心点和外层晕组成的单丝。从照片中观察单丝结构,发现混合气体中氩气所占的比例越重,单丝的直径随之越小,同时中心点和外层晕的亮度有明显的差异,说明中心点和外层晕可能处于不同的等离子体状态。实验对单丝结构进行了光学时空分辨测量,研究了中心点和外层晕两层结构的微观特性。利用发射光谱法,详细地研究了该单丝结构的中心点和外层晕的等离子体参数随氩气含量的变化关系。实验根据氮分子第二正带系(C3ΠuB3Πg)谱线计算了中心点和外层晕的分子振动温度;通过氮分子离子N+2(391.4 nm) 第一负带系谱线与氮分子N2(394.1nm)谱线强度比,反映中心点和外层晕的电子平均能量随氩气含量的变化关系;利用氩原子763.2 nm(2P6→1S5)和772.077 nm(2P2→1S3)两条谱线的相对强度比法,估算了中心点和外层晕的电子激发温度。结果表明:中心点的光信号对应着第一个电流脉冲, 且其光信号较弱;而外层晕的光信号同时对应着第一个和第二个电流脉冲, 且其光信号较强。在相同的氩气含量条件下,外层晕比中心点的分子振动温度、电子平均能量以及电子激发温度均要高。随着氩气含量从30%逐渐增大到50%,中心点和外层晕的分子振动温度是逐渐减小的,而电子平均能量和电子激发温度均是逐渐增大的。  相似文献   

14.
采用光谱法, 研究了氩气/空气混合气体介质阻挡放电中蜂窝斑图形成过程中等离子体参量的变化。实验发现,随着电压的增加,放电经历六边形点阵斑图及疏密点同心圆环斑图后,形成了蜂窝斑图。利用氮分子第二正带系(C3ΠuB3Πg)的发射谱线、氩原子763.26 nm(2P6→1S5)与772.13 nm(2P2→1S3)两条谱线强度比法和氩原子696.57 nm(2P2→1S5)谱线的展宽,分别研究了上述三种斑图的分子振动温度、电子激发温度和电子密度。结果发现:蜂窝斑图的分子振动温度和电子激发温度均高于六边形点阵斑图相应的温度,但其电子密度却比后者的电子密度低。实验还通过电容法,测量了放电斑图的放电功率,发现蜂窝斑图的放电功率远远高于六边形点阵斑图的放电功率。工作结果对于研究介质阻挡放电自组织斑图的形成机制具有重要意义。  相似文献   

15.
设计了水电极放电装置,在空气/氩气混合气体中实现了大面积沿面放电。采用发射光谱法,对分子振动温度、电子平均能量和电子激发温度等随气压的变化进行了研究。根据氮分子第二正带系(C3ΠuB3Πg)的发射谱线计算出氮分子的振动温度;使用Ar 763.51 nm(2P6→1S5)和772.42 nm(2P2→1S3)的两条发射谱线的强度比得到电子激发温度;通过氮分子离子391.4 nm和氮分子337.1 nm两条发射谱线的相对强度之比得出了电子的平均能量的变化。实验研究了发射光谱随气压的变化,发现其强度随着气压的增加而增强,且其整个轮廓和谱线强度之比也发生变化。随着气压从0.75×105Pa升高到1×105Pa,分子振动温度、电子激发温度和电子能量均呈下降趋势。  相似文献   

16.
利用自制针—板式放电装置,在大气中进行电晕放电实验。用发光区域照片光斑的大小,讨论了电晕层厚度与电源电压的关系。在相同针板间距下,电晕层厚度随着电压的升高而增大;在相同电压下,电晕层厚度随着针板间距的增大而减小。由于高能电子密度能够通过氮分子第二正带系337.1 nm的光谱强度大小反映,因此对氮分子第二正带系337.1 nm谱线的强度用发射光谱法进行了测量。实验结果发现在针尖附近高能电子密度最大,并且高能电子密度随电压的升高而增大;电压一定时,高能电子密度随针板间距的增大而减小。在针板间距和电源电压不变的情况下,高能电子密度随针尖曲率半径的减小而增大。  相似文献   

17.
甲醇交流放电产物的光谱研究   总被引:2,自引:0,他引:2  
利用浓度调制光谱技术测量甲醇交流放电分解产物的发射光谱,在300~700 nm之间主要观测到激发态CO分子的B 1Σ+—A1Π Angstrōm跃迁带、激发态CH分子430 nm附近的A 2ΔX 2Π跃迁带系和390 nm附近的B 2Σ-—X 2Π跃迁带系以及CHO(329.82 nm),CH2O(369.8 nm),CH3O(347.8 nm),H(巴末耳线系)的发射谱线。通过光谱强度分析得到,CO激发态B 1Σ+的振动温度达1 638 K,CH激发态A 2Δ的振动和转动温度分别为4 200和1 100 K。改变放电电压和样品气压,测量CO,CH和H的发射光谱强度的变化关系,发现增加放电电压或减少样品气压,CO(B 1Σ+)和H(656 nm) 的发射光谱强度比CH(A 2Δ)发射光谱强度增加得快,从而进一步讨论了甲醇交流放电解离通道和产氢机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号