首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 352 毫秒
1.
采用热蒸发的方法在硅片衬底上自组装生长的Pentacene薄膜,薄膜在80℃温度下经2 h恒温真空热处理,通过原子力显微镜(AFM)对Pentacene薄膜表面形貌及其生长机制进行研究.结果得到,在硅片上生长的Pentacene薄膜足以台阶岛状结构生长,其岛状直径约为100 nm.且Pentacene分子以垂直于衬底的方向生长,台阶岛状结构中每个台阶的平均高度约为1.54 nnl·s-1,与Pentacene分子的沿长轴方向的长度相近.从Pentacene薄膜的XRD图谱中可以看出,薄膜在形成的过程中会因条件的不同而形成不同的结晶相,分别为薄膜相和三斜体相,且薄膜的结晶相将随着薄膜厚度的增加向三斜体相转变,其临界厚度为80和150 nm,当薄膜大于150 nm时,薄膜的三斜体相占主导地位,而当Pentacene薄膜的厚度小于80 nm时,Pentacene薄膜呈薄膜相存在.  相似文献   

2.
Pentacene (C22H14) thin films with different thicknesses were fabricated to study the dynamic growth process and morphology of pentacene on different substrates. A discontinuous monomolecular layer was observed when a pentacene thin film is about 0.5 nm thick on native oxide silicon wafer. The terraced islands and dendritic structure gradually formed with increasing pentacene thin film thickness. The height of each layer is about 1.4 nm which corresponds well with the length of the long axis of the pentacene molecule at 1.45 nm. Experimental results show that the pentacene molecule is perpendicular to the silicon wafer surface with a slight tilted angle. However, the pentacene molecular orientation on a polymer pre-covered indium tin oxide coated substrate could not give any indication on the scale of nanometers. The surface roughness of substrates strongly influences pentacene molecular diffusion and the morphology of pentacene thin films.  相似文献   

3.
He-Ju Xu 《中国物理 B》2022,31(3):38503-038503
Amorphous-microcrystalline MoS$_{2}$ thin films are fabricated using the sol-gel method to produce MoS$_{2}$/Si-based solar cells. The generation mechanisms of the S-shaped current density-voltage ($J$-$V$) curves of the solar cells are analyzed. To improve the performance of the solar cells and address the problem of the S-shaped $J$-$V$ curve, a MoS$_{2}$ film and a p$^+$ layer are introduced into the front and back interfaces of the solar cell, respectively, which leads to the formation of a p-n junction between the p-Si and the MoS$_{2}$ film as well as ohmic contacts between the MoS$_{2}$ film and the ITO, improving the S-shaped $J$-$V$ curve. As a result of the high doping characteristics and the high work function of the p$^+$ layer, a high-low junction is formed between the p$^+$ and p layers along with ohmic contacts between the p$^+$ layer and the Ag electrode. Consequently, the S-shaped $J$-$V$ curve is eliminated, and a significantly higher current density is achieved at a high voltage. The device exhibits ideal p-n junction rectification characteristics and achieves a high power-conversion efficiency (CE) of 7.55%. The findings of this study may improve the application of MoS$_{2}$ thin films in silicon-based solar cells, which are expected to be widely used in various silicon-based electronic and optical devices.  相似文献   

4.
We chose pentacene as a hole injection layer (HIL) to fabricate the high performance blue fluorescent organic light-emitting devices (OLEDs). We found that the carrier mobility of the pentacene thin films could be efficiently improved after a critical annealing at temperature 120 °C. Then we performed the tests of scanning electron microscopy, atomic force microscopy, and Kelvin probe to explore the effect of annealing on the pentacene films. The pentacene film exhibited a more crystalline form with better continuities and smoothness after annealing. The optimal device with 120 ℃ annealed pentacene film and n-doped electron transport layer (ETL) presents a low turn-on voltage of 2.6 V and a highest luminance of 134800 cd/m2 at 12 V, which are reduced by 26% and improved by 50% compared with those of the control device.  相似文献   

5.
A thermally stable thin diffusion barrier in Cu/Si contacts was developed using a thin nano-crystalline ZrN film. The Cu/ZrN/Si contact system using a reactively sputtered ZrN barrier with 20 nm in thickness consisting of several to 10 nm grains tolerated annealing at 600 °C for 1 h without any Cu penetration through the barrier. This was interpreted that the scarce structural change in the prepared nano-crystalline ZrN film due to annealing was favorite for the thermal stability of thin barrier application.  相似文献   

6.
To improve Organic Thin Film Transistor (OTFT) properties we study OTFT semiconductor/dielectric interfacial properties via examination of the gate dielectric using thin Parylene C layer. Structural and morphology properties of pentacene layers deposited on parylene layer and SiO2/Si substrate structure were compared. The surface morphology was investigated using atomic force microscopy (AFM) and scanning electron microscopy (SEM). AFM topography of pentacene layer in non-contact mode confirmed the preferable pentacene grain formation on parylene surface in dependence on layer thickness. The distribution of chemical species on the surfaces and composition depth profiles were measured by secondary ion mass spectroscopy (SIMS) and surface imaging. The depth profiles of the analyzed structures show a homogenous pentacene layer, characterized with C or C2 ions. Relatively sharp interface between pentacene and parylene layers was estimated by characteristic increased intensity of CCl ions peak. For revealing the pentacene phases in the structures the Micro-Raman spectroscopy was utilized. Conformal coatings of parylene and pentacene layers without pinholes resulted from the deposition process as was confirmed by SIMS surface imaging. For the pentacene layers thicker than 20 nm, both thin and bulk pentacene phases were detected by Micro-Raman spectroscopy, while for the pentacene layer thickness of 5 and 10 nm the preferable thin phase was detected. The complete characterisation of pentacene layers deposited on SiO2 and parylene surface revealed that the formation of large grains suggests 3D pentacene growth at parylene layer with small voids between grains and more than one monolayer step growth. The results will be utilized for optimization of the deposition process.   相似文献   

7.
Polarization‐dependent Raman microscopy is a powerful technique to perform both structural and chemical analyses with submicron spatial resolution. In conventional Raman microscopy, the polarization measurements are limited only in the direction parallel to the sample plane. In this work, we overcome the limit of conventional measurements by controlling the incident polarization by a spatially modulated waveplate. In this method, the polarization perpendicular to the sample surface (z‐polarization) can be detected together with the parallel polarization (xy‐polarization). Because of this unique polarization control, our Raman microscope has the ability to image the molecular orientation, together with the molecular analysis. Here, we have investigated thin films of pentacene molecules that are widely studied as an organic semiconductor material. The orientations of pentacene molecules are imaged with a spatial resolution of 300 nm. Our results clearly indicate that the lamellar grains show the lower tilt angles compared to the neighboring islands, which has not been proved in conventional methods. The substrate effects and the thickness dependence of the film are also studied. These results provide knowledge about the relationship between the devise performance and the film structures, which is indispensable for future device exploitations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
蒸发条件对碘化铅多晶薄膜结构的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
李玉红  贺德衍  张宇  李振生 《物理学报》2007,56(10):6028-6032
采用真空蒸发法在普通玻璃上制备了PbI2多晶薄膜.研究了蒸发速率、蒸发源与衬底距离、薄膜厚度以及衬底温度等实验条件对所制备PbI2多晶薄膜结构的影响.利用X射线衍射仪和扫描电子显微镜对样品进行了测试.结果表明,在衬底温度为室温时得到(001)择优取向的多晶PbI2薄膜,即沿c轴垂直衬底方向取向生长的薄膜.当衬底温度升高时,薄膜的择优取向逐渐由(001)转向(003),且晶体颗粒变大.薄膜中的内应力随衬底温度的升高而降低.  相似文献   

9.
Three Bi2Sr2Co2Oy thin films with different microstructures have been prepared by chemical solution deposition on LaAlO 3(001) through varying the annealing temperature.With the decrease in the annealing temperature,both the size and c-axis alignment degree of grains in the film decrease as well,leading to an increase in the film resistivity.In addition,the decrease in the annealing temperature also results in a slight increase in the Seebeck coefficient due to the enhanced energy filtering effect of the small-grain film.The nanostructured Bi2Sr2Co2Oy film with an average grain size of about 100 nm shows a power factor comparable to that of films with larger grains.Since the thermal conductivity of the nanostructured films can be depressed due to the enhanced phonon scattering by grain boundary,a higher figure of merit is expected in Bi2Sr2Co2Oy thin film with grains in nanometer size.  相似文献   

10.
Photoemission Electron Microscopy was used to determine basic factors for nucleation and growth of thin pentacene films. Dependence of both substrate chemistry and deposition rate on the nucleation density was observed. On SiO2 pentacene shows a high nucleation density and forms small islands consisting of almost vertically oriented molecules. On Si(001) the nucleation density of this thin-film phase is much smaller, but the pentacene film first forms a flat-lying wetting layer. The thin-film phase only forms on top of this wetting layer. Adsorption of a cyclohexene self-assembled monolayer on Si(001) prior to the pentacene growth suppresses the initial pentacene wetting layer but maintains diffusion parameters similar to pentacene on Si(001). The nucleation of pentacene layers on cyclohexene/Si(001) can be described by classical nucleation theory with a critical nucleus size i6. Simple surface modification techniques such as e-beam irradiation of the substrates prior to pentacene adsorption can also have a significant effect on the pentacene nucleation density. PACS 68.37.Nq; 68.43.Fg; 68.47.Fg; 68.55.Ac  相似文献   

11.
《Current Applied Physics》2018,18(2):241-245
This work investigated the effects of heating rate and annealing on the magneto-optical properties of bismuth-substituted yttrium iron garnet (Bi-YIG) thin films on glass and (111)-oriented single-crystalline gadolinium gallium garnet (GGG) substrates fabricated by metal-organic decomposition (MOD). We modified the MOD method by eliminating the pre-annealing process. We performed annealing at various temperatures to determine the optimal temperature for obtaining the Bi-YIG phase. We then annealed at the optimized temperature using various heating rates. The optimal conditions were annealing for 1 h at 750 °C at a heating rate of 30 °C/min on GGG to obtain highly crystallized fine grains. The Faraday rotation for this film was about −10.5°/μm. The optimized heating rate enhanced the magneto-optical properties due to improved crystallinity and saturated magnetization. The Bi-YIG thin films prepared by this prescribed MOD method exhibited excellent magneto-optical performance and are potential candidates for applications in optical devices.  相似文献   

12.
Magnesium films of various thicknesses were first deposited on silicon (1 1 1) substrates by magnetron sputtering method and then annealed in annealing furnace filled with argon gas. The effects of the magnesium film thickness and the annealing temperature on the formation of Mg2Si films were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The Mg2Si thin films thus obtained were found to be polycrystalline and the Mg2Si (2 2 0) orientation is preferred regardless of the magnesium film thickness and annealing temperature. XRD results indicate that high quality magnesium silicide films are produced if the magnesium/silicon samples are annealed at 400 °C for 5 h. Otherwise, the synthesized films annealed at annealing temperatures lower than 350 °C or higher than 450 °C contain magnesium crystallites or magnesium oxide. SEM images have revealed that microstructure grains in the polycrystalline films are about 1-5 μm in dimensions, and the texture of the Mg2Si films becomes denser and more homogeneous as the thickness of the magnesium film increases.  相似文献   

13.
采用X射线衍射和X射线光电子能谱实验手段对不同厚度的NiTi薄膜相变温度的变化进行了分析.结果表明在相同衬底温度和退火条件下,3?μm厚度的薄膜晶化温度高于18?μm厚度的薄膜.衬底温度越高,薄膜越易晶化,退火后薄膜奥氏体相转变温度As越低.薄膜的表面有TiO2氧化层形成,氧化层阻止了Ni原子渗出;膜与基片的界面存在Ti2O3和NiO.由于表面和界面氧化层的存在,不同厚度的薄膜内层的厚度也不同,因而薄膜越薄,Ni原子的含量就越高.Ni原子的含量的不同会影响薄膜的相变温度. 关键词: NiTi合金薄膜 X射线衍射 相变 X射线光电子能谱  相似文献   

14.
B.R. Conrad 《Surface science》2009,603(3):L27-13358
Ultra-thin oxide (UTO) films were grown on Si(1 1 1) in ultrahigh vacuum at room temperature and characterized by scanning tunneling microscopy. The ultra-thin oxide films were then used as substrates for room temperature growth of pentacene. The apparent height of the first layer is 1.57 ± 0.05 nm, indicating “standing up” pentacene grains in the thin film phase were formed. Pentacene is molecularly resolved in the second and subsequent molecular layers. The measured in-plane unit cell for the pentacene (0 0 1) plane (ab plane) is a = 0.76 ± 0.01 nm, b = 0.59 ± 0.01 nm, and γ = 87.5 ± 0.4°. The films are unperturbed by the UTO’s short-range spatial variation in tunneling probability, and reduce its corresponding effective roughness and correlation exponent with increasing thickness. The pentacene surface morphology follows that of the UTO substrate, preserving step structure, the long range surface rms roughness of ∼0.1 nm, and the structural correlation exponent of ∼1.  相似文献   

15.
Microstructure variation of FePt thin film upon annealing at elevated temperatures was investigated by transmission electron microscopy (TEM). A special shape aperture was employed to observe the ordered L10 phase in the dark-field TEM images. With increasing the annealing temperature, crystal grains formed clusters with gathering of neighboring grains, and crystal grain growth proceeded within the cluster. L10 ordered crystal grains were preferentially formed near the grain boundaries, and their sizes grew with increasing the annealing temperature.  相似文献   

16.
Zheng Han 《中国物理 B》2021,30(8):86107-086107
A nano-twinned microstructure was found in amorphous SiC after high-temperature annealing. Grazing incidence x-ray diffraction, high-resolution transmission electron microscopy, and electron diffraction were performed to characterize the microstructure and phase transition in the recrystallization layer. After 1500 ℃ or 2-h annealing, 3C-SiC grains and numerous stacking faults on the {111} planes were visible. Some 3C-SiC grains have nano-twinned structure with {011} planes. Between the nano-twinned 3C-SiC grains, there is a stacking fault, indicating that the formation mechanisms of the nano-twinned structure are related to the disorder of Si atoms. The increase in the twin thickness with increasing annealing temperature demonstrates that the nano-twinned structure can sink for lattice defects, in order to improve the radiation tolerance of SiC.  相似文献   

17.
The effects of layer thickness and thermal annealing on Curie temperature have been studied for CoPt ultrathin continuous layers in AlN/CoPt multilayer structures. It is found that there exists a critical thickness below which Curie temperature rapidly decreases due to the loss of spin-spin interactions in the vicinity of interface. After high temperature annealing, the in-plane lattice constant of CoPt film is increased and the exchange coupling parameter is decreased. Consequently, Curie temperatures decrease for some films with large thickness, compared with as-deposited state. Upon annealing at 600?°C, CoPt undergoes ordering transformation, which also contributes to the degradation of the Curie temperature. However, when the CoPt film thickness is below 2?nm, the Curie temperature is increased after annealing. Especially for 1?nm thick film, the Curie temperature is strikingly increased from 173?°C to 343?°C after annealing at 600?°C. This effect is attributed to the out-of-plane lattice deformation of CoPt thin layers in AlN/CoPt multilayer structures.  相似文献   

18.
The morphology of glassy amorphous thin polycarbonate film cast from solution is affected by thermal treatments. Annealing above 80° C and below Tg results in an increase in the size of the ordered regions, nodules, up to several hundred Angströms. The crystallization process from the glass, taking place at 145° C, is divided into three major steps. At first the nodules merge into patches which aggregate to form lamellar planar structures. In some cases the planar structures are well-formed single crystals. Following this, spherulitic arms develop from the planar structures as centers. These arms at first consist of aggregates of large nodules which recrystallize to form lamellae; the final morphology is spherulitic in nature. The effect of film thickness and of several substrates on the morphology has been observed. Applying stress at room temperature to the crystalline film results in a breaking up of the lamellae into small blocks.  相似文献   

19.
曹永泽  王强  李国建  马永会  隋旭东  赫冀成 《物理学报》2015,64(6):67502-067502
有无6 T强磁场条件下, 利用分子束气相沉积方法制备了21 nm和235 nm厚的Fe-Ni纳米多晶薄膜. 研究发现, 0 T时, 21 nm厚的薄膜是晶粒堆叠而成, 晶粒尺寸为6–7 nm; 6 T时, 21 nm厚的薄膜首先在基片表面形成了晶粒相互连接的5 nm平坦层, 晶粒沿基片表面拉长, 随后以6–7 nm尺寸的晶粒堆叠而成; 0 T时, 235 nm厚度的薄膜生长初期平均晶粒尺寸为3.6 nm, 生长中期平均晶粒尺寸为5.6 nm, 生长末期薄膜近似柱状方式生长, 晶粒沿生长方向拉长; 6 T时, 235 nm厚度的薄膜在基片表面也形成了晶粒相互连接的5 nm平坦层, 晶粒沿基片表面拉长, 随后以尺寸均匀的6.1 nm晶粒堆叠而成; 而且, 6 T强磁场使得不同厚度薄膜的面外与面内矫顽力都降低.  相似文献   

20.
Raman scattering analysis is used to study the residual stress in metal-induced crystallized amorphous silicon thin film. The influence of the crystallization parameters on thin film properties is investigated as a function of annealing temperature, annealing time, and nickel top-seed-layer thickness. Thin films produced under optimal annealing conditions are measured to have crystallization efficiency of about 98%, which is full crystallization. Residual stress analysis reveals clear stress reduction with prolonged annealing time and Ni capping layer thickness. A very low tensile stress of about 87 MPa is achieved. The relationships between optimal crystallization temperature, crystallization time, and Ni-layer thickness are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号