首页 | 官方网站   微博 | 高级检索  
     


Analysis of the generation mechanism of the S-shaped J—V curves of MoS2/Si-based solar cells
Affiliation:1.College of Science, North China University of Science and Technology, Tangshan 063009, China;2.College of Physics Science and Technology, Hebei University, Baoding 071002, China
Abstract:Amorphous-microcrystalline MoS$_{2}$ thin films are fabricated using the sol-gel method to produce MoS$_{2}$/Si-based solar cells. The generation mechanisms of the S-shaped current density-voltage ($J$-$V$) curves of the solar cells are analyzed. To improve the performance of the solar cells and address the problem of the S-shaped $J$-$V$ curve, a MoS$_{2}$ film and a p$^+$ layer are introduced into the front and back interfaces of the solar cell, respectively, which leads to the formation of a p-n junction between the p-Si and the MoS$_{2}$ film as well as ohmic contacts between the MoS$_{2}$ film and the ITO, improving the S-shaped $J$-$V$ curve. As a result of the high doping characteristics and the high work function of the p$^+$ layer, a high-low junction is formed between the p$^+$ and p layers along with ohmic contacts between the p$^+$ layer and the Ag electrode. Consequently, the S-shaped $J$-$V$ curve is eliminated, and a significantly higher current density is achieved at a high voltage. The device exhibits ideal p-n junction rectification characteristics and achieves a high power-conversion efficiency (CE) of 7.55%. The findings of this study may improve the application of MoS$_{2}$ thin films in silicon-based solar cells, which are expected to be widely used in various silicon-based electronic and optical devices.
Keywords:MoS2/Si-based solar cell  S-shaped JV curve  power conversion efficiency  p+ layer  
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号