首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnO quantum dots (QDs) were fabricated on Si (001) substrates by pulsed laser deposition (PLD) and subsequent thermal annealing. X-ray diffraction and transmission electron microscopy analyses revealed that the ZnO QDs had polycrystalline hexagonal wurtzite structure. The size and density of ZnO QDs were investigated by atomic force microscopy. It has been found that the density decreased while the size increased with increasing annealing temperature. The analysis of size distribution of the dots shows an obvious bimodal mode according to scaling theory. The Raman spectrum shows a typical resonant multi-phonon form for the ZnO QDs. The collapse from the top of the dots was observed firstly after the samples were exposed in air for 30 days.  相似文献   

2.
In this study, pulsed laser ablation, online annealing, and following size classification using a differential mobility analyzer (DMA) were employed to fabricate quantum dots (QDs) of zinc oxide (ZnO). The irregularly shaped ZnO particles were obtained at annealing temperature less than 873 K, which gradually transformed into spherical QDs with increasing the annealing temperature. Finally, ZnO QDs with narrow size distribution having spherical shapes were successfully obtained at temperatures above 1173 K under the DMA classification at a nominal size of 10 nm. TEM observation demonstrated that the ZnO QDs obtained by this process were well-crystallized single crystallites with a wurtzite structure. Further, ZnO QDs with average sizes in the range of 4.8–8.1 nm were successfully fabricated by reducing the specified sizes of DMA. These features of the fabricated ZnO QDs are favorable for investigation of intrinsic quantum size effect in ZnO.  相似文献   

3.
The properties of ZnO quantum dots (QDs) synthesized by the sol-gel process are reported. The primary focus is on investigating the origin of the visible emission from ZnO QDs by the annealing process. The X-ray diffraction results show that ZnO QDs have hexagonal wurtzite structure and the QD diameter estimated from Debye-Scherrer formula is 8.9 nm, which has a good agreement with the results from transmission electron microscopy images and the theoretical calculation based on the Potential Morphing Method. The room-temperature photoluminescence spectra reveal that the ultraviolet excitation band has a red shift. Meanwhile, the main band of the visible emission shifts to the green luminescence band from the yellow luminescence one with the increase of the annealing temperature. A lot of oxygen atoms enter into Zn vacancies and form oxygen antisites with increasing temperature. That is probably the reason for the change of the visible emission band.  相似文献   

4.
Yue Q  Cheng J  Li G  Zhang K  Zhai Y  Wang L  Liu J 《Journal of fluorescence》2011,21(3):1131-1135
We synthesized ZnO quantum dots (QDs) simply in alcoholic solution, and investigated the interaction between ZnO QDs and bromothymol blue. The structural, morphological, size and spectral properties of ZnO QDs were studied. It was found that ZnO QDs were spherical nanoparticles in the crystal structure, and the average diameter of ZnO QDs was about 4.8 nm. The excitation and emission peaks were located at 346 nm and 520 nm, respectively, which were obtained on a common fluorophotometer. The quantum yield of ZnO QDs was obtained by using quinine sulfate as a reference reagent. In addition, the fluorescence of ZnO QDs can be quenched by bromothymol blue, and the quenching mechanism was proposed in a dynamic quenching mode.  相似文献   

5.
ZnO quantum dots (QDs) with strong blue emission have been successfully synthesized by sol-gel method, and their crystal structures, sizes, and photoluminescence properties were characterized by X-ray diffractometer, scanning electron microscope, and ultraviolet-visible spectroscopy. It has been found that ZnO QDs had a hexagonal wurtzite crystal structure, and their average diameter was about 16.0-32.2 nm. Both the reaction time and temperature were found to have a strong influence on the average size and photoluminescence properties of ZnO QDs. Longer reaction time and higher reaction temperature resulted in larger average size for ZnO QDs. It has been shown that at reaction temperature 60 °C the emission intensity for ZnO QDs increased first with reaction time before 7 h and then decreased after 7 h. For the same reaction time 7 h, ZnO QDs synthesized at 60 °C showed the strongest emission intensity. It was found that annealing in nitrogen, vacuum, and air all resulted in an increase of the size of ZnO QDs and a reduction in their photoluminescence. The dependence of the size and properties of ZnO QDs on the reaction parameters as well as the annealing conditions has been discussed.  相似文献   

6.
乔泊  赵谡玲  徐征  徐叙瑢 《中国物理 B》2016,25(9):98102-098102
The ZnO quantum dots (QDs) were synthesized with improved chemical solution method. The size of the ZnO QDs is exceedingly uniform with a diameter of approximately 4.8 nm, which are homogeneously dispersed in ethanol. The optical absorption edge shifts from 370 nm of bulk material to 359 nm of QD materials due to the quantum size effect, while the photoluminescence peak shifts from 375 nm to 387 nm with the increase of the density of ZnO QDs. The stability of ZnO QDs was studied with different dispersion degrees at 0 ℃ and at room temperature of 25 ℃. The agglomeration mechanisms and their relationship with the emission spectra were uncovered for the first time. With the ageing of ZnO QDs, the agglomeration is aggravated and the surface defects increase, which leads to the defect emission.  相似文献   

7.
An efficient photoelectrode is fabricated by sequentially assembled CdS and CdSe quantum dots (QDs) onto a ZnO-nanowire film. As revealed by UV-vis absorption spectrum and scanning electron microscopy (SEM), CdS and CdSe QDs can be effectively adsorbed on ZnO-nanowire array. Electrochemical impedance spectroscopy (EIS) measured demonstrates that the electron lifetime for ZnO/CdS/CdSe (13.8 ms) is calculated longer than that of ZnO/CdS device (6.2 ms), which indicates that interface charge recombination rate is reduced by sensitizing CdSe QDs. With broader light absorption range and longer electron lifetime, a power conversion efficiency of 1.42% is achieved for ZnO based CdS/CdSe co-sensitized solar cell under the illumination of one Sun (AM 1.5G, 100 mW cm−2).  相似文献   

8.
Aqueous dispersion of 4-8 nm size stable ZnO quantum dots (QDs) exhibiting luminescence in the visible region have been synthesized by a simple solution growth technique at room temperature. Silica has been used as capping agent to control the particle size as well as to achieve uniform dispersion of QDs in aqueous medium. X-ray diffractometer (XRD) analysis reveals formation phase pure ZnO particles having wurzite (hexagonal) structure. Atomic force microscope (AFM) images show that the particles are spherical in shape, having average crystalline sizes ∼4, 5.5 and 8 nm for samples prepared at pH values of 10, 12 and 14, respectively. From the optical absorption studies, the band gap energy of QDs is found to be blue shifted as compared to bulk ZnO (3.36 eV) due to the quantum confinement effect and is consistent with the band gap calculated by using effective-mass approximation model. The photoluminescence (PL) observed in these QDs has been attributed to the presence of defect centers.  相似文献   

9.
Photoluminescence (PL) properties of 3-mercaptopropionic acid (MPA) coated CdTe/CdS core-shell quantum dots (QDs) in aqueous solution in the presence of ZnO colloidal nanocrystals were studied by steady-state and time-resolved PL spectroscopy. The PL quenching of CdTe/CdS core-shell QDs with addition of purified ZnO nanocrystals resulted in a decrease in PL lifetime and a small red shift of the PL band. It was found that CdTe(1.5 nm)/CdS type II core-shell QDs exhibited higher efficiency of PL quenching than the CdTe(3.0 nm)/CdS type I core-shell QDs, indicating an electron transfer process from CdTe/CdS core-shell QDs to ZnO nanocrystals. The experimental results indicated that the efficient electron transfer process from CdTe/CdS core-shell QDs to ZnO nanocrystals could be controlled by changing the CdTe core size on the basis of the quantum confinement effect.  相似文献   

10.
InAs quantum dots (QDs) were grown by molecular beam epitaxy in the Stranski-Krastanow growth mode. The samples were placed between two undoped GaAs slices and annealed in nitrogen ambient at different temperature. Effect of annealing temperature on the evolution of QDs morphology is investigated by the AFM. This behavior can be attributed to the mechanisms of QDs ripening, intermixing and segregation in the annealing process. A number of QDs have evoluted into the uniform distribution quantum rings (QRs) when the sample was annealed at the temperature of 800 °C. The results indicated that high density and uniform QRs can be obtained by the post-growth technique.  相似文献   

11.
利用飞秒激光Z-扫描与泵浦-探测技术,研究了室温下ZnO/ZnS与ZnO/ZnS/Ag核-壳胶体量子点的双光子吸收效应.研究发现:ZnO基核-壳量子点的本征双光子吸收系数比ZnO体材料增大了3个数量级;测量得到的660 nm处的ZnO/ZnS核-壳量子点双光子吸收截面约为4.3×10-44 cm4·s·photon-1,比相应的ZnS、ZnSe及 CdS量子点大2个数量级;当ZnO/ZnS核-壳量子点镶嵌了银纳米点时,非线性吸收有所增强.ZnO基复合纳米结构的双光子吸收增强可归因于量子限域与局域场效应.  相似文献   

12.
采用原位聚合法制备了以ZnO量子点为核、石墨烯量子点(GQDs)为壳的ZnO@ GQDs核壳结构量子点。通过TEM和HR-TEM对量子点进行形貌和结构的分析表征。结果表明,合成的ZnO@ GQDs核壳结构量子点为球形,粒径为~7 nm,且尺寸均匀。PL光谱研究表明,新型量子点的发射峰位于369 nm,发光峰窄、强度高;相对于ZnO的本征发射峰,GQDs的引入使得ZnO@GQDs核壳量子点的荧光发射峰出现蓝移、强度变高,从而使复合量子点的荧光具有较纯的色度和较高的强度,说明GQDs的引入具有协同优化效应。该量子点有望应用于LED显示器件。  相似文献   

13.
利用湿化学方法制备合成Zn O量子点,通过改变合成条件(反应时间、反应物浓度、反应温度)对量子点的尺寸及发光性能进行调控。利用透射电子显微镜、吸收光谱、荧光光谱等表征手段,探讨了合成条件对Zn O量子点光学性质的影响,并优化出适用于构建白光LED器件的最佳合成条件。研究结果表明,在反应温度为20℃、反应时间为3 h、前驱体Zn(OAc)_2和Li OH反应浓度比为2∶1时获得的Zn O量子点较为稳定,并在紫外光激发下发出明亮的黄绿色光。在此基础上,以该Zn O量子点为有源层、p-Ga N∶Mg基片为空穴注入层、非晶Al_2O_3薄膜为电子阻挡层构造了p-i-n型异质结LED,在正向注入电流为5 m A时,获得了来自于器件的白光发射,其色坐标为(0.28,0.30),色温为9 424 K。  相似文献   

14.
H.J. Meng 《Physics letters. A》2009,373(15):1379-1382
(In, Cr)As ferromagnetic semiconductor quantum dots (QDs) were grown by molecular beam epitaxy on GaAs (001) substrates. The growth temperature effects on structure and magnetism of the QDs were investigated systematically. The Cr2+3d4 states and quantum confined effect are assumed to play an important role in the room-temperature ferromagnetism of (In, Cr)As QDs.  相似文献   

15.
The binding energy Eb of the acceptor-exciton complex (A,X) as a function of the radius (or of the impurity position of the acceptor) and the normalized oscillator strength of (A,X) in spherical ZnO quantum dots (QDs) embedded in a SiO2 matrix are calculated using the effective-mass approximation under the diagonalzation matrix technique, including a three-dimensional confinement of the carrier in the QD and assuming a finite depth. Numerical results show that the binding energy of the acceptor-exciton complexes is particularly robust when the impurity position of the acceptor is in the center of the ZnO QDs. It has been clearly shown from our calculations that these physical parameters are very sensitive to the quantum dot size and to the impurity position. These results could be particularly helpful, since they are closely related to experiments performed on such nanoparticles. This may allow us to improve the stability and efficiency of the semiconductor quantum dot luminescence which is considered critical.  相似文献   

16.
Kun Zhong 《光谱学快报》2013,46(3):160-164
ABSTRACT

ZnO quantum dots (QDs) embedded in SiO2 matrix are fabricated by ion implantation and annealing treatment methods. When the Zn-doping dose is (2, 3, 5, and 7) × 1016 cm?2, the size of quantum dots is in the range of ~4–10 nm in diameter according to the XRD and HR-TEM results. Ultraviolet and green light emissions from the specimen are obtained at room temperature. With the increase of the Zn-doping dose, the PL peak in the ultraviolet region red shifts from 3.32 to 3.10 eV. This PL peak is related to the size of ZnO QDs, which is ascribed to the free exciton recombination in QDs. The green light emissions centered at 2.43 and 2.25 eV are independent of the Zn-doping dose and annealing temperature, which are attributed to the deep-level defect and the small peroxy radical (SPR) defect, respectively.  相似文献   

17.
Hongyu Ma 《中国物理 B》2021,30(8):87303-087303
The slower response speed is the main problem in the application of ZnO quantum dots (QDs) photodetector, which has been commonly attributed to the presence of excess oxygen vacancy defects and oxygen adsorption/desorption processes. However, the detailed mechanism is still not very clear. Herein, the properties of ZnO QDs and their photodetectors with different amounts of oxygen vacancy (VO) defects controlled by hydrogen peroxide (H2O2) solution treatment have been investigated. After H2O2 solution treatment, VO concentration of ZnO QDs decreased. The H2O2 solution-treated device has a higher photocurrent and a lower dark current. Meanwhile, with the increase in VO concentration of ZnO QDs, the response speed of the device has been improved due to the increase of oxygen adsorption/desorption rate. More interestingly, the response speed of the device became less sensitive to temperature and oxygen concentration with the increase of VO defects. The findings in this work clarify that the surface VO defects of ZnO QDs could enhance the photoresponse speed, which is helpful for sensor designing.  相似文献   

18.
ZnO quantum dots(QDs) as an eco-friendly and low-cost material has bright fluorescence, which makes it promising material for healthy lighting and displaying. However, the low fluorescence efficiency and poor stability of ZnO QDs impede their applications in lighting application. In this work, silica encapsulated ZnO QD-phosphors nanocomposites(ZSPN) have been prepared through a sol-gel synthesis process, where yellow-emitting ZnO QDs and blue-emitting BaMgAl_(10) O_(17):Eu~(2+) are employed as the luminescence cores and silica as link between two luminescence materials. Tunable photoluminescence of ZSPN and the white light emission have been achieved through changing mass ratio of both of ZnO QDs and commercial phosphors. The PLQY of the ZSPN can reach 63.7% and they can maintain high luminous intensity even the ambient temperature up to 110?C and after 35 h of UV irradiation. In addition, they can keep stable for 40 days. By coating the ZSPN phosphors onto a ultraviolet chip, WLEDs with luminous efficiency of 73.6 lm/W and the color coordinate, correlated color temperature, and color rendering index can reach(0.32, 0.34), 5580 K, and 87, respectively,indicating the bright prospect of the ZSPN phosphors used in healthy lighting.  相似文献   

19.
In this article, we have decorated multiwalled carbon nanotubes (MWCNTs) scaffold with ZnO quantum dots (QDs, size in the range of 2.9–4.5 nm) and investigated their prospects for photovoltaic applications. ZnO QDs, in the present study, work as photosensitizer instead of electron transporting media as used in recent conventional strategic solar cells. ZnO QDs/MWCNTs composite shows an increased visible absorbance and quenching of the broad visible emission at around ~560 nm, while only ZnO QDs exhibit a strong visible emission. An efficient electron–hole separation facilitates an increase in the short-circuit current. These results show a possibility of developing a nontoxic, ZnO QDs sensitized MWCNTs composite-based photovoltaic solar cell.  相似文献   

20.
Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号