首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Characterization of samples of cadmium selenide quantum dots (CdSe) QDs dissolved in toluene colloidal solutions at a concentration of 1.4 mg/ml was carried out through UV–Vis absorption and photoluminescence (PL) spectroscopy. The size-dependent absorption and red-shifted PL emission peak wavelengths could be tuned between 510–576 and 545–606 nm respectively. Optical absorption spectral measurements yielded CdSe QDs having diameters about ~ 2.44–3.69 nm with energy gaps 2.32–2.08 eV which are higher than the bulk CdSe (1.74 eV) reminiscent of quantum confinement. This is found to be in good agreement with the semi-empirical pseudopotential model. In addition, the first excitonic absorption transition 1S(e)1S3/2(h) oscillator strength and the corresponding fluorescence radiative decay time of CdSe QDs are assessed using relevant Einstein relations for absorption and emission in a two-level system. The elaborated calculations would anticipate that the transition oscillator scale with the CdSe QD radius as ~ R2.54. Correspondingly, the calculated radiative decay times decrease from 56.4 to 23.2 ns which scale with CdSe QDs radius as ~ R?2.155 in fairly good agreement with experimental values reported in the literature.  相似文献   

2.
Colloidal ZnS quantum dots (QDs) are prepared by passing H2S gas through a solution of Zn(CH3COO)2 in acetonitrile. Photophysical properties are investigated using UV?CVisible and photoluminescence (PL) spectroscopy. The spectrum shows an absorption shoulder at 271 nm representing a band gap of 4.6 eV. The doping of ZnS QDs with Co, Cu, and a mixture of Co and Cu not only increased the band gap to 0.2 eV but also turns these otherwise colorless QDs to blue in color due to cobalt, and green due to Cu. The observed emission in the visible region suggests that the dopants may have induced additional excited states to the ZnS QDs. This absorbance in the visible region can be utilized in the optoelectronic applications.  相似文献   

3.
InAs quantum dots (QDs) were successfully formed in single-crystalline Si by sequential ion implantation and subsequent milliseconds range flash lamp annealing (FLA). Samples were characterized by μ-Raman spectroscopy, Rutherford Backscattering Spectrometry (RBS) high-resolution transmission electron microscopy (HRTEM) and low temperature photoluminescence (PL). The Raman spectrum shows two peaks at 215 and 235 cm?1 corresponding to the transverse optical (TO) and longitudinal optical (LO) InAs phonon modes, respectively. The PL band at around 1.3 μm originates from the InAs QDs with an average diameter 7.5±0.5 nm and corresponds to the increased band gap energy due to the strong quantum confinement size effect. The FLA of 20 ms is sufficient for InAs QDs formation. It also prevents the out-diffusion of implanted elements. Moreover, the silicon layer amorphized during ion implantation is recrystallized by solid-phase epitaxial regrowth during FLA.  相似文献   

4.
Zhang  Y.  Wang  X.Q.  Chen  W.Y.  Bai  X.D.  Liu  C.X.  Yang  S.R.  Liu  S.Y. 《Optical and Quantum Electronics》2001,33(11):1131-1137
In this paper, room temperature PL spectra of InAs self-assembled dots grown on GaAs/InP and InP substrate are presented. For analyzing different positions of the PL peaks, we examine the strain tensor in these quantum dots (QDs) using a valence force field model, and use a five-band k·p formalism to find the electronic spectra. We find that the GaAs tensile-stained layer affects the position of room temperature PL peak. The redshift of PL peak of InAs/GaAs/InP QDs compared to that of InAs/InP QDs is explained theoretically.  相似文献   

5.
Si-rich oxide/SiO2 multilayer films with different SiO2 layer thicknesses have been deposited by the plasma enhanced chemical vapor deposition technique, and crystallized Si quantum dot (Si-QD)/SiO2 multilayer films are obtained after annealing at 1100 °C. The photoluminescence (PL) intensity of the multilayer films increases significantly with increasing SiO2 layer thickness, and the PL peak shifts from 1.25 eV to 1.34 eV. The PL excitation spectra indicate that the maximal PL excitation intensity is located at 4.1 eV, and an excitation–transfer mechanism exists in the excitation processes. The PL decay time for a certain wavelength is a constant when the SiO2 thickness is larger than 2 nm, and a slow PL decay process is obtained when the SiO2 layer is 1 nm. In addition, the PL peak shifts toward high energy with decreasing temperature only when the SiO2 layer is thick enough. Detailed analyses show that the mechanism of PL changes from the quantum confinement effect to interface defects with decreasing SiO2 layer thickness.  相似文献   

6.
Metal sulphide quantum dots (QDs) have broad applications. Sulphate-reducing bacteria (SRB) have been recognized as synthesizers of metal sulphides, with the characteristics of a high-production efficiency and easy product harvest. However, SRB are incapable of synthesizing metal sulphide QDs. In the present study, cheap hydroxypropyl starch (HPS) was used to assist SRB in manufacturing the ZnS QDs. The results exhibited that the HPS accelerated the growth of SRB and reduction of SO4 2+ into S2?, while it blocked the precipitation between S2? and Zn2+ to control the nucleation and growth of ZnS, resulting in the formation of ZnS QDs. When the HPS concentration increased from 0.2 to 1.6 g/L, the average crystal size (ACS) of ZnS QDs dropped from 5.95 to 3.34 nm, demonstrating the controlled biosynthesis of ZnS QDs. The ZnS QDs were coated or adhered to by both HPS and proteins, which played an important role in the controlled biosynthesis of ZnS QDs. The remarkable blue shift of the narrow UV absorption peak was due to the quantum confinement effect. The sequential variation in the colour of the photoluminescence spectrum (PL) from red to yellow suggested a tunable PL of the ZnS QDs. The current work demonstrated that SRB can fabricate the formation of ZnS QDs with a controlled size and tunable PL at a high-production rate of approximately 8.7 g/(L × week) through the simple mediation of HPS, with the yield being 7.46 times the highest yield in previously reported studies. The current work is of great importance to the commercialization of the biosynthesis of ZnS QDs.  相似文献   

7.
We investigate the effect of in situ annealing during growth pause on the morphological and optical properties of self-assembled InAs/GaAs quantum dots (QDs). The islands were grown at different growth rates and having different monolayer coverage. The results were explained on the basis of atomic force microscopy (AFM) and photo-luminescence (PL) measurements. The studies show the occurrence of ripening-like phenomenon, observed in strained semiconductor system. Agglomeration of the self-assembled QDs takes place during dot pause leading to an equilibrium size distribution. The PL properties of the QDs are affected by the Indium desorption from the surface of the QDs during dot pause annealing at high growth temperature (520°C) subsiding the effect of the narrowing of the dot size distribution with growth pause. The samples having high monolayer coverage (3.4 ML) and grown at a slower growth rate (0.032 ML s−1) manifested two different QD families. Among the islands the smaller are coherent defect-free in nature, whereas the larger dots are plastically relaxed and hence optically inactive. Indium desorption from the island surface during the in situ annealing and inhomogeneous morphology as the dots agglomerate during the growth pause, also affects the PL emission from these dot assemblies.  相似文献   

8.
Room temperature ferromagnetism was observed in Cr-implanted ZnO nanowires annealed at 500, 600, and 700 °C. The implantation dose for Cr ions was 1×1016 cm?2, while the implantation energies were 100 keV. Except for ZnO (100), (002), and (200) orientations, no extra diffraction peaks from Cr-related secondary phase or impurities were observed. With the increasing of annealing temperatures, the intensity of the peaks increased while the FWHM values decreased. The Cr 2p1/2 and 2p3/2 peaks, with a binding energy difference of 10.6 eV, appear at 586.3 and 575.7 eV, can be attributed to Cr3+ in ZnO nanowires. For the Cr-implanted ZnO nanowires without annealing, the band energy emission disappears and the defect related emission with wavelength of 500–700 nm dominates, which can be attributed to defects introduced by implantation. Cr-implanted ZnO nanowires annealed at 500 °C show a saturation magnetization value of over 11.4×10?5 emu and a positive coercive field of 67 Oe. The origin of ferromagnetism behavior can be explained on the basis of electrons and defects that form bound magnetic polarons, which overlap to create a spin-split impurity band.  相似文献   

9.
We investigate effects of annealing on GaSb quantum dots (QDs) formed by droplet epitaxy. Ga droplets grown on GaAs are exposed to Sb molecular beam and then annealed at Ta=340–450 °C for 1 min to form GaSb QDs. An atomic force microscope study shows that with the increase of Ta, the average diameter of dots increases by about 60%, while their density decreases to about 1/3. The photoluminescence (PL) of GaSb QDs is observed at around 1 eV only for those samples annealed above Ta=380 °C, which indicates that the annealing process plays an important role in forming high quality GaSb QDs.  相似文献   

10.
The photoluminescence(PL) properties of a green and blue light-emitting InGaN/GaN multiple quantum well structure with a strong phase separated into quasi-quantum dots(QDs) and an InGaN matrix in the InGaN epilayer are investigated.The excitation power dependences of QD-related green emissions(P_D) and matrix-related blue emissions(P_M) in the low excitation power range of the PL peak energy and line-width indicate that at 6 K both P_m and P_D are dominated by the combined action of Coulomb screening and localized state filling effect.However,at 300 K,P_m is dominated by the non-radiative recombination of the carriers in the InGaN matrix,while P_D is influenced by the carriers transferred from the shallower QDs to deeper QDs by tunnelling.This is consistent with the excitation power dependence of the PL efficiency for the emission.  相似文献   

11.
ZnO thin films, irradiated by 80 MeV Ni+ ions, were analysed with the help of different characterization techniques like X-ray diffraction, optical absorption, transmission, photoluminescence (PL), electrical resistivity, photosensitivity (PS) and thermally stimulated current (TSC) measurements. Crystallinity and absorption edge were hardly affected by irradiation. PL spectrum of pristine sample showed a broad peak at 517 nm, whereas irradiated film had two emissions at 517 and 590 nm. Intensity ratio between these two emissions (I517/I590) decreased with the fluence, and finally at a fluence of 3×1013 ions/cm2, the emission at 517 nm completely disappeared. Electrical resistivity of the sample irradiated with a fluence of 1×1013 ions/cm2 drastically increased. However, on increasing the fluence to 3×1013 ions/cm2, resistivity decreased, probably due the onset of hopping conduction through defects. PS also decreased due to irradiation. TSC measurements on pristine sample could reveal only one defect level at 0.6 eV, due to interstitia1 zinc (ZnI). But, irradiation at a fluence of 1×1012 ions/cm2, resulted in three different defect levels as per TSC studies. Interestingly, the sample irradiated at a fluence of 3×1013 ions/cm2 had only one defect level corresponding to a deep donor. The possible origin of these defect levels is also discussed in the paper.  相似文献   

12.
The effects of thermal annealing on the large monolayer (11 ML) coverage of In0.45Ga0.55As/GaAs quantum dots (QDs) is being investigated in this study. Low temperature (8 K) photoluminescence (PL) spectra exhibits suppressed blueshift of the strongest PL emission peak even at high temperature annealing (800 °C). TEM and DCXRD characterizations showed the existence of the dots with good crystalline quality at annealing temperatures of 800-850 °C. The physics of annealing induced compositional modification of the InGaAs QDs with various monolayer coverage has been studied by a theoretical model and simulation. All our studies establish the thermal stability of large ML coverage InGaAs QDs, which is desirable for optoelectronic devices required for selective wavelength tuning in specific applications.  相似文献   

13.
The photoluminescence (PL) of Mn-implanted quantum dot (QD) samples after rapid annealing is studied. It is found that the blue shift of the PL peak of the QDs, introduced by the rapid annealing, decreases abnormally as the implantation dose increases. This anomaly is probably related to the migration of Mn atoms to the InAs QDs during annealing, which leads to strain relaxation when Mn atoms enter InAs QDs or to the suppression of the inter-diffusion of In and Ga atoms when Mn atoms surround QDs. Both effects will suppress the blue shift of the QD PL peaks. The temperature dependence of the PL intensity of the heavily implanted QDs confirms the existence of defect traps around the QDs.  相似文献   

14.
Photoluminescence and absorption in sol-gel-derived ZnO films   总被引:1,自引:0,他引:1  
Highly c-axis-oriented ZnO films were obtained on corning glass substrate by sol-gel technique. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption in the absorption (UV) spectra are closely related to the post-annealing treatment. The difference between PL peak position and the absorption edge, designated as Stokes shift, is found to decrease with the increase of annealing temperature. The minimum Stokes shift is about 150 meV. The decrease of Stokes shift is attributed to the decrease in carrier concentration in ZnO film with annealing. X-ray diffraction, surface morphology and refractive index results indicate an improvement in crystalline quality with annealing. Annealed films also exhibit a green emission centered at ∼520 nm with activation energy of 0.89 eV. The green emission is attributed to the electron transition from the bottom of the conduction band to the antisite oxygen OZn defect levels.  相似文献   

15.
Aqueous dispersion of 4-8 nm size stable ZnO quantum dots (QDs) exhibiting luminescence in the visible region have been synthesized by a simple solution growth technique at room temperature. Silica has been used as capping agent to control the particle size as well as to achieve uniform dispersion of QDs in aqueous medium. X-ray diffractometer (XRD) analysis reveals formation phase pure ZnO particles having wurzite (hexagonal) structure. Atomic force microscope (AFM) images show that the particles are spherical in shape, having average crystalline sizes ∼4, 5.5 and 8 nm for samples prepared at pH values of 10, 12 and 14, respectively. From the optical absorption studies, the band gap energy of QDs is found to be blue shifted as compared to bulk ZnO (3.36 eV) due to the quantum confinement effect and is consistent with the band gap calculated by using effective-mass approximation model. The photoluminescence (PL) observed in these QDs has been attributed to the presence of defect centers.  相似文献   

16.
Luminescence mechanism of ZnO thin film investigated by XPS measurement   总被引:1,自引:0,他引:1  
The effects of annealing environment on the luminescence characteristics of ZnO thin films that were deposited on SiO2/Si substrates by reactive RF magnetron sputtering were investigated by X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). An analysis of the O 1s peak of ZnO film revealed that the concentration of oxygen vacancies increased with the annealing temperature from 600 °C to 900 °C under an ambient atmosphere. The PL results demonstrated that the intensity of green light emission at 523 nm also increased with temperature. Under various annealing atmospheres, the analyses of PL indicated that only one emission peak (523 nm) was obtained, indicating that only one class of defect was responsible for the green luminescence. The green light emission was strongest and the concentration of oxygen vacancies was highest when the ZnO film was annealed in ambient atmosphere at 900 °C. The results in this investigation show that the luminescence mechanism of the emission of green light from a ZnO thin film is associated primarily with oxygen vacancies. PACS 81.15.Cd; 81.40.Ef; 78.55.-m; 78.55.Et  相似文献   

17.
Photoluminescence (PL) measurements have been carried out to investigate the annealing effects in one-period and three-periods of InAs/GaAs self-assembled quantum dots (QDs) grown on GaAs substrates by using molecular beam epitaxy. After annealing, the PL spectra for the annealed InAs/GaAs QDs showed dramatic blue shifts and significant linewidth narrowing of the PL peaks compared with the as-grown samples. The variations in the PL peak position and the full width at half-maximum of the PL peak are attributed to changes in the composition of the InAs QDs resulting from the interdiffusion between the InAs QDs and the GaAs barrier and to the size homogeneity of the QDs. These results indicate that the optical properties and the crystal qualities of InAs/GaAs QDs are dramatically changed by thermal treatment.  相似文献   

18.
The effects of rapid thermal annealing on the optical properties of InAs/(In)GaAs quantum dots (QDs) with different areal density were investigated by photoluminescence (PL) measurement. The annealing results in PL peak energy blue-shift which strongly depends on QD areal density and capping layer. It is noticeable that low-density QDs and/or InGaAs-capped QDs are more sensitive to the annealing. We attribute the larger energy blue-shift from these samples to enhanced strain-driven diffusion and/or defect-assisted diffusion.  相似文献   

19.
采用原位聚合法制备了以ZnO量子点为核、石墨烯量子点(GQDs)为壳的ZnO@ GQDs核壳结构量子点。通过TEM和HR-TEM对量子点进行形貌和结构的分析表征。结果表明,合成的ZnO@ GQDs核壳结构量子点为球形,粒径为~7 nm,且尺寸均匀。PL光谱研究表明,新型量子点的发射峰位于369 nm,发光峰窄、强度高;相对于ZnO的本征发射峰,GQDs的引入使得ZnO@GQDs核壳量子点的荧光发射峰出现蓝移、强度变高,从而使复合量子点的荧光具有较纯的色度和较高的强度,说明GQDs的引入具有协同优化效应。该量子点有望应用于LED显示器件。  相似文献   

20.
A novel and simple method is described for preparing colloidal Cu‐doped ZnSe(S) quantum dots (QDs) in aqueous media by introducing copper ions using the same method as to prepare colloidal ZnSe(S). More specifically, the Cu‐doped ZnSe(S) are prepared through the nucleation‐doping method in the presence of 3‐mercaptopropionic acid as stabilizers using zinc perchlorate, copper sulphate, and NaHSe as precursors. Confirmation of the preparation of Cu‐doped ZnSe(S) nanocrystals (NCs) is done with absorption and emission spectroscopies (UV–vis and PL) as the QDs show intensive green emissions. The reduction of ions Cu2+ to Cu+ is confirmed by using electron paramagnetic resonance (EPR), in which Cu+ ions are silent. The size determination is performed by using transmission electron microscopy (TEM) and dynamic light scattering (DLS), resulting in Cu‐doped ZnSe(S) particles with a mean diameter of 4.6 ± 3.5 nm. The excellent stability observed for the nanoparticles overcomes the intrinsic instability of traditional aqueous Cu‐doped ZnSe(S) NCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号