首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MnFe2O4 nanoparticles have been synthesized with a sol-gel method. Both differential thermal and thermo-gravimetric analyses indicate that MnFe2O4 nanoparticles form at 400 °C. Samples treated at 450 and 500 °C exhibit superparamagnetism at room temperature as implied from vibrating sample magnetometry. Mössbauer results indicate that as Mn2+ ions enter into the octahedral sites, Fe3+ ions transfer from octahedral to tetrahedral sites. When the calcination temperature increases from 450 to 700 °C, the occupation ratio of Fe3+ ions at the octahedral sites decreases from 43% to 39%. Susceptibility measurements versus magnetic field are reported for various temperatures (from 450 to 700 °C) and interpreted within the Stoner-Wohlfarth model.  相似文献   

2.
DFT calculations are employed to bulk and surface properties of spinel oxide Co3O4. The bulk magnetic structure is calculated to be antiferromagnetic, with a Co2+ moment of 2.631 μB in the antiferromagnetic state. There are three predicted electron transitions O(2p) → Co2+(t2g) of 2.2 eV, O(2p) → Co3+(eg) of 2.9 eV and Co3+(t2g) → Co2+(t2g) of 3.3 eV, and the former two transitions are close to the corresponding experimental values 2.8 and 2.4 eV. The naturally occurring Co3O4 (1 1 0) and (1 1 1) surfaces were considered for surface calculations. For ideal Co3O4 (1 1 0) surfaces, the surface relaxations are not significant, while for ideal Co3O4 (1 1 1) surfaces the relaxation of Co2+ cations in the tetrahedral sites is drastic, which agrees with the experiment observation. The stability over different oxygen environments for possible ideal and defect surface terminations were explored.  相似文献   

3.
The magneto-optical spectra of Co1+xFe2?xO4 show with increasing Co3+ content an increasing intensity of the 4A2 ? 4T1(F) and 4A2 ? 4T1(P) transition of Co2+ at 0.8 and 2.0 eV. A decrease in the Co2+-Fe3+ charge transfer transitions on octahedral sites is found. In the optical spectra a strong increase in optical absorption is found with dominant transitions at 0.8, 1.6 and 2.6 eV due to Co3+ crystal field transitions on octahedral sites and a Co2+-Co3+ charge transfer. Conversion Electron Mössbauer Spectroscopy has been used to determine the cation distribution in the surface layer of the samples. The results indicate a shift of Co2+ from octahedral to tetrahedral sites when Co3+ is substituted in CoFe2O4. This results in enhanced optical absorption, enhanced magneto-optical effects and a lower Curie temperature.  相似文献   

4.
The glasses of the composition 10ZnO-30ZnF2-60B2O3 doped with different concentrations of CoO were prepared. Differential scanning calorimetric (DSC) studies, optical absorption, photoluminescence and infrared spectra of these glasses have been carried out. DSC studies have indicated that the resistance of the glass against devitrification increases with the increase in the concentration of CoO. Optical absorption spectra have exhibited one octahedral band due to 4T1g(F)→2T1g(H) and two tetrahedral bands due to 4A2(4F)→4T1(4P) 4A2(4F)→4T1(4F) transitions of Co2+ ions at about 525, 570 and 1400 nm, respectively. As the concentration of CoO is increased the tetrahedral bands are observed to grow at the expense of octahedral band. The luminescence spectra have exhibited two emission bands in the spectral regions of 600-700 nm and 800-900 nm due to 4T1(4P)→4A2(4F) and 4T1(4P)→4T2(4F) tetrahedral transitions of Co2+ ions, respectively. With the increasing content of cobalt ions in the glass matrix, the half width and intensity of these bands are observed to increase. The analysis of the results of these two spectra coupled with IR spectra has indicated that as the concentration of CoO is increased in the glass matrix, the tetrahedral occupancy of cobalt ions dominates over the octahedral occupancy and increase the rigidity of the glass network.  相似文献   

5.
Nanocomposite made of 10 wt% of Co2.4Al0.6O4 particles dispersed in an amorphous SiO2 matrix has been synthesized by a sol-gel method. X-ray diffraction, transmission electron microscopy and magnetic measurements have been used to characterize the properties of nanocomposite. Most of the particles are well crystallized and have an average diameter below 100 nm. Smaller particles with size below 10 nm have also been observed. A large value of the effective magnetic moment per Co2+ ion of 5.08 μB and negative and the low Curie-Weiss paramagnetic temperature Θ∼−6 K, obtained from the high-temperature susceptibility data, indicate a possible mixing of Co2+ and Co3+ ions between tetrahedral and octahedral sites of the spinel crystal lattice. The measurements of static and dynamic magnetic susceptibilities have shown that Co2.4Al0.6O4 particles in SiO2 matrix display a spin glass behavior at low temperatures.  相似文献   

6.
Optical transitions in normal-spinel Co3O4 have been identified by investigating the variation of its optical absorption spectrum with the replacement of Co by Zn. Three optical-transition structures were located at about 1.65, 2.4, and 2.8 eV from the measured dielectric function of Co3O4 by spectroscopic ellipsometry. The variation of the absorption structures with the Zn substitution (ZnxCo3−xO4) can be explained in terms of charge-transfer transitions involving d states of Co ions. The 1.65 eV structure is assigned to a d-d charge-transfer transition between the t2g states of octahedral Co3+ ion and t2 states of tetrahedral Co2+ ion, t2g(Co3+)→t2(Co2+). The 2.4 and 2.8 eV structures are interpreted as due to charge-transfer transitions involving the p states of O2− ion: p(O2−)→t2(Co2+) for the 2.4 eV absorption and p(O2−)→eg(Co3+) for the 2.8 eV absorption. The observed gradual reduction of the 1.65 and 2.4 eV absorption strength with the increase of the Zn composition for ZnxCo3−xO4 can be explained in terms of the substitution of the tetrahedral Co2+ sites by Zn2+ ions. The crystal-field splitting ΔOh between the eg and the t2g states of the octahedral Co3+ ion is estimated to be 2 eV.  相似文献   

7.
Mössbauer spectra of four spinels having the general formulae CoxFe3?xO4 and x ~ 1.0, 1.5, 2.0 and 2.5 have been obtained at liquid helium temperature and in a large transverse magnetic field. Intensity data have been used to determine the distribution of iron ions between octahedral and tetrahedral sites. The results are examined on the basis of two models. For one there is a competition between the Fe3+ ions and the cobalt ions for the two sites; while for the other there is a competition between Fe3+ ions and Co2+ ions for the two sites. The relative merits of these two extreme models are discussed.  相似文献   

8.
Electron energy loss spectra (ELS) have been obtained from polycrystalline Cr and Cr2O3 before and after surface reduction by 2 keV Ar+ bombardment. The primary electron energy used in the ELS measurements was systematically varied from 100 to 1150 eV in order to distinguish surface versus bulk loss processes. Two predominant loss features in the ELS spectra obtained from Cr metal at 9.0 and 23.0 eV are assigned to the surface and bulk plasmon excitations, respectively, and a number of other features arising from single electron transitions from both the bulk and surface Cr 3d bands to higher-lying states in the conduction band are also present. The ELS spectra obtained from Cr2O3 exhibit features that originate from both interband transitions and charge-transfer transitions between the Cr and O ions as well as the bulk plasmon at 24.4 eV. The ELS feature at 4.0 eV arises from a charge-transfer transition between the oxygen and chromium ions in the two surface layers beneath the chemisorbed oxygen layer, and the ELS feature at 9.8 eV arises from a similar transition involving the chemisorbed oxygen atoms. The intensity of the ELS peak at 9.8 eV decreases after Ar+ sputtering due to the removal of chemisorbed oxygen atoms. Sputtering also increases the number of Cr2+ states on the surface, which in turn increases the intensity of the 4.0 eV feature. Furthermore, the ELS spectra obtained from the sputtered Cr2O3 surface exhibit features characteristic of both Cr0 and Cr2O3, indicating that Ar+ sputtering reduces Cr2O3. The fact that neither the surface- nor the bulk-plasmon features of Cr0 can be observed in the ELS spectra obtained from sputtered Cr2O3 while the loss features due to Cr0 interband transitions are clearly present indicates that Cr0 atoms form small clusters lacking a bulk metallic nature during Ar+ bombardment of Cr2O3.  相似文献   

9.
In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe2O4 and ferrimagnetic oxide/ferromagnetic metal CoFe2O4/CoFe2 nanocomposite. The latter compound is a good system to study hard ferrimagnet/soft ferromagnet exchange coupled. Two steps were followed to synthesize the bimagnetic CoFe2O4/CoFe2 nanocomposite: (i) first, preparation of CoFe2O4 nanoparticles using a simple hydrothermal method, and (ii) second, reduction reaction of cobalt ferrite nanoparticles using activated charcoal in inert atmosphere and high temperature. The phase structures, particle sizes, morphology, and magnetic properties of CoFe2O4 nanoparticles were investigated by X-Ray diffraction (XRD), Mossbauer spectroscopy (MS), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) with applied field up to 3.0 kOe at room temperature and 50 K. The mean diameter of CoFe2O4 particles is about 16 nm. Mossbauer spectra revealed two sites for Fe3+. One site is related to Fe in an octahedral coordination and the other one to the Fe3+ in a tetrahedral coordination, as expected for a spinel crystal structure of CoFe2O4. TEM measurements of nanocomposite showed the formation of a thin shell of CoFe2 on the cobalt ferrite and indicate that the nanoparticles increase to about 100 nm. The magnetization of the nanocomposite showed a hysteresis loop that is characteristic of exchange coupled systems. A maximum energy product (BH)max of 1.22 MGOe was achieved at room temperature for CoFe2O4/CoFe2 nanocomposites, which is about 115% higher than the value obtained for CoFe2O4 precursor. The exchange coupling interaction and the enhancement of product (BH)max in nanocomposite CoFe2O4/CoFe2 are discussed.  相似文献   

10.
The A-site substituted BaTiO3 ceramics were prepared by solid-state reaction via partial substitution of Fe for Ba2+. By comparison with the B-site substituted sample made under similar conditions, the effect of Fe doping site on microstructure and magnetism was investigated using X-ray diffraction, Mössbauer spectroscopy and vibrating sample magnetometer. It is found that A-site substitution can be realized to a certain extent at 7 at% Fe addition, whereas impurities are observed at higher Fe concentrations. In the nominal (Ba0.93Fe0.07)TiO3 sample, the Fe ions are present as Fe2+ and Fe3+, respectively, replacing A-site Ba2+ and octahedral B-site Ti4+ in hexagonal perovskite lattice. The double-exchange Fe2+-O2−-Fe3+ interactions produce ferromagnetism well above room temperature, but the saturation magnetization and the Curie temperature are both obviously lower than those for B-site substitution due to different magnetic exchange mechanisms. In the B-site substituted sample Ba(Ti0.93Fe0.07)O3, the super-exchange interactions between Fe3+ on pentahedral and octahedral Ti4+ sites are responsible for ferromagnetism. These results mean that B-site substitution is a better way for Fe-doped BaTiO3 system to obtain high-Curie-temperature ferromagnetism. Moreover, increasing pre-sintering time can further improve the magnetism of B-site substituted samples, through which the saturation magnetization for Ba(Ti0.93Fe0.07)O3 is enhanced ∼6 times.  相似文献   

11.
In this paper we report the combustion synthesis of trivalent rare-earth (RE3+ = Dy, Eu and Ce) activated Sr4Al2O7 phosphor. The prepared phosphors were characterized by the X-ray powder diffraction (XRD) and photoluminescence (PL) techniques. Photoluminescence emission peaks of Sr4Al2O7:Dy3+ phosphor at 474 nm and 578 nm in the blue and yellow region of the spectrum. The prepared Eu3+ doped phosphors were excited by 395 nm then we found that the characteristics emission of europium ions at 615 nm (5D0?7F2) and 592 nm (5D0?7F1). Photoluminescence (PL) peaks situated at wavelengths of 363 and 378 nm in the UV region under excitation at around 326 nm in the Sr4Al2O7:Ce3+ phosphor.  相似文献   

12.
Nb-doped Z-type hexaferrites (Ba3(Co0.4Zn0.6)2Fe24O41) with composition of Ba3(Co0.4Zn0.6)2Fe24O41+x Nb2O5 (where x=0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.2, 1.6 and 2.0 wt%) were prepared by a solid-state reaction method. The effects of different sintering temperature (Ts) and Nb2O5 content on the sintering behaviors, phase composing, microstructure, and magnetic properties of the samples were investigated. The results from X-ray diffraction and scanning electron microscopy show that as the amount of Nb2O5 additive increases, the major phase changes to Z-phase, Simultaneously, M-phase and a small amount of niobate phase appear. The Nb2O5 additive promotes the grain growth as reaction center at lower sintering temperature (1220 °C), but at higher temperature (1260 °C), niobate phase separated out in grain boundaries as secondary phase will restrain abnormal grain growth, so closed pores in grains are not formed. The Nb2O5 additive can enhance densification, improve initial permeability of hexaferrites by increasing the grain growth of hexaferrite and the displacement of ions in the sintering process due to the aberration and activation of crystal lattice, which is accompanied by the solubility of Nb5+ in the hexaferrites. A relative density of 96%, maximum initial permeability (32–33), minimum coercivity (454–455 A/m) and resonance frequency above 400 MHz were obtained for the sample with 0.8 wt% Nb2O5 sintered at 1260 °C for 6 h.  相似文献   

13.
Gd3+-substituted micro-octahedron composites (FexCo1−x/CoyGdzFe3−yzO4) in which the Fe-Co alloy has either a bcc or fcc structure and the oxide is a spinel phase were fabricated by the hydrothermal method. The X-ray diffraction (XRD) patterns indicate that the as-synthesized Gd3+-substituted micro-octahedron composites are well crystallized. Scanning electron microscopy (SEM) images show that the final product consists of larger numbers of micro-octahedrons with the size ranging from 1.3 to 5 μm, and the size of products are increased with increasing the concentration of KOH. The effect of the Co2+/Fe2+ ratio (0?Co2+/Fe2+?1) and substitution Fe3+ ions by Gd3+ ions on structure, magnetic properties of the micro-octahedrons composites were investigated, and a possible growth mechanism is suggested to explain the formation of micro-octahedrons composites. The magnetic properties of the structure show the maximal saturation magnetization (107 emu/g) and the maximal coercivity (1192 Oe) detected by a vibrating sample magnetometer.  相似文献   

14.
Nano-sized magnetic Y3Fe5O12 ferrite having a high heat generation ability in an AC magnetic field was prepared by bead milling. A commercial powder sample (non-milled sample) of ca. 2.9 μm in particle size did not show any temperature enhancement in the AC magnetic field. The heat generation ability in the AC magnetic field improved with a decrease in the average crystallite size for the bead-milled Y3Fe5O12 ferrites. The highest heat ability in the AC magnetic field was for the fine Y3Fe5O12 powder with a 15-nm crystallite size (the samples were milled for 4 h using 0.1 mm? beads). The heat generation ability of the excessively milled Y3Fe5O12 samples decreased. The main reason for the high heat generation property of the milled samples was ascribed to an increase in the Néel relaxation of the superparamagnetic material. The heat generation ability was not influenced by the concentration of the ferrite powder. For the samples milled for 4 h using 0.1 mm? beads, the heat generation ability (W g−1) was estimated using a 3.58×10−4 fH2 frequency (f/kHz) and the magnetic field (H/kA m−1), which is the highest reported value of superparamagnetic materials.  相似文献   

15.
The high-temperature oxidation resistance and magnetic properties of Si-doped Sm2Co17-type magnets at 500 °C were systematically investigated. The Sm(Co0.76, Fe0.1, Cu0.1, Zr0.04)7Six (x=0–0.6) magnets were prepared by the conventional powder metallurgical technique. It is found that the addition of silicon in the Sm2Co17-type magnet can remarkably improve its oxidation resistance. Moreover, a small amount of silicon addition can also increase its high-temperature intrinsic coercivity. A maximum intrinsic coercivity of 6.7 kOe at 500 °C was obtained for the Sm2Co17-type magnet with Si content x=0.4, whose high-temperature maximum energy product loss was about 2.5 times smaller than pure Sm2Co17-type magnet after oxidation at 500 °C for 100 h, indicating the enhanced oxidation resistance. Its corresponding Curie temperature and saturation magnetization are about 723.9 °C and 7.4 kG, respectively.  相似文献   

16.
Bi(Fe0.95Co0.05)O3 films were prepared on conductive indium tin oxide (ITO)/glass substrates by chemical solution deposition. Well saturated polarization hysteresis loop has been observed with a remnant polarization value of about 22 μC/cm2 at room temperature. Weak ferromagnetism with saturation magnetization of about 3 emu/cm3 was observed at room temperature. The clear observation of both room temperature ferroelectric and ferromagnetic properties suggests the potential multiferroic applications of Bi(Fe0.95Co0.05)O3.  相似文献   

17.
A Sr0.8La0.2Fe11.8Co0.2O19 ferrite film has been prepared on a (0 0 1) sapphire substrate by chemical solution deposition. Structural characteristics indicate that the film is c-axis oriented and single-phase with space group P63/mmc. The grains are regular columnar with diameter between 50 and 100 nm as determined by atomic force microscopy. The sample possesses high saturation magnetization (130 emu/cm3), high coercivity (6.9 kOe), and large squareness ratio (0.9) at room temperature, which makes it a promising recording material.  相似文献   

18.
Lithium has been inserted into the spinel Co3O4 both chemically and electrochemically. During lithiation the tetrahedral A-site Co2+ cations are displaced into neighbouring empty octahedral sites: the incoming Li+ ions occupy the remaining interstitial octahedra of the spinel structure to produce the partially ordered rocksalt compound LiCo3O4. The octahedral B-site cations of the A[B2]X4 spinel are unperturbed by this reaction: the oxide lattice expands by 8.6%. Lithium analyses and powder X-ray diffraction spectra indicate that further lithiation is possible. However, it is demonstrated that a fast lithiation in excess of LiCo3O4 is followed by a slow extrusion of B-site cobalt at 50°C until all the Li on the 8a sites has moved to the octahedral vacancies thus created.  相似文献   

19.
 采用溶胶-凝胶工艺和高温高压实验技术,制备了纳米CoFe2O4/SiO2复合材料。利用X射线衍射仪、扫描电子显微镜和振动样品磁强计,对样品的结构、微观形貌和磁性进行了研究,并对CoFe2O4中阳离子的占位情况进行了讨论。结果表明,随着处理压力的升高,样品的晶粒尺寸增大,晶格常数减小,比饱和磁化强度增大。通过计算结果可以推断,压力的升高导致CoFe2O4中的部分Fe3+从A位移向了B位,而部分Co2+则从B位移向了A位。  相似文献   

20.
Effects of Mn substitution for Co and Fe on the structural and magnetic properties of inverse-spinel CoFe2O4 have been investigated. MnxCo1−xFe2O4 and MnyCoFe2−yO4 thin films were prepared by a sol–gel method. The observed increase of the lattice constant of MnxCo1−xFe2O4 indicates that Mn2+ ions substitute the octahedral Co2+ sites. Conversion electron Mössbauer spectroscopy data indicate that a fraction of octahedral Co2+ ions exchange sites with tetrahedral Fe3+ ions through Mn doping. Vibrating-sample magnetometry data exhibit a large increase of saturation magnetization for both MnxCo1−xFe2O4 and MnyCoFe2−yO4 films compared to that of the CoFe2O4 film. Such enhancement of magnetization can be explained in terms of a breaking of ferrimagnetic order induced by the Co2+ migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号