首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
(LaO)_3BO_3基质中Tb~(3+)的发光特性   总被引:1,自引:0,他引:1  
在 2 54nm紫外光 (UV)激发下 ,研究了 (La O) 3 BO3 基质中 Tb3 + 的激发光谱、发射光谱、发光寿命与Tb3 +浓度的关系 ,并探讨了 Tb3 +的 5D3 → 7F4 跃迁发射的自身浓度猝灭机理。在阴极射线 (CR)激发下 ,研究了 (L a O) 3 BO3 :Tb3 + 的发光强度与 Tb3 + 浓度、加速电压及电流密度的关系。发现在 UV或 CR两种激发条件下 ,试样均能发出明亮的绿色荧光 ,有望成为一种有发展前途的绿粉  相似文献   

2.
(Y,Gd)BO3:Tb3+的真空紫外及紫外激发光谱特性   总被引:2,自引:0,他引:2  
采用传统的高温固相反应法合成出(Y,Gd)BO3:Tb荧光体,对所制得的荧光体进行了晶体结构分析,分析结果表明结晶良好。(Y,Gd)BO3:Tb在147nm真空紫外光激发下的发射主峰在544nm(Tb^3+的^5D4→^7F5跃迁),是一种绿色发光材料。样品的真空紫外激发光谱及紫外激发光谱表明,(Y,Gd)BO3:Tb的基质吸收带位于150nm附近。Gd^3+离子对真空紫外区的光吸收有增强作用,存在着Gd^3+→Tb^3+的能量传递。测量了荧光粉在室温下的荧光衰减特性,其余辉时间约为8ms,能够满足显示显像技术的要求。因此,(Y,Gd)-BO3:Tb是一种有前景的PDP用绿色发光材料。  相似文献   

3.
用高温固相法合成了Sr3B2O6:Tb^3+,Li^+绿色荧光粉,并研究粉体的发光性质。发射光谱由位于黄绿区的4个主要荧光发射峰组成,峰值分别位于495,548,598,625nm,对应了Tb^3+的^5D4→^7F6,^5D4→^7F5,^5D4→^7和^5D4→^7F3特征跃迁发射,548nm的发射最强。激发光谱表现从200—400nm的宽带,可以被近紫外光辐射二极管(near-ultraviolet light-emitting diodes,UVLED)管芯产生的350-410nm辐射有效激发。研究了Tb^3+掺杂和电荷补偿剂对样品发光亮度的影响。Sr3B2O6:Tb^3+,Li^+是一种适用于白光LED的绿色荧光粉。  相似文献   

4.
初本莉  陶冶等 《发光学报》2001,22(3):263-267
本文报道了Ln7O6(BO3)(PO4)2:Eu(Ln=La,Gd,Y)在UVU-UV区的激发光谱及Eu^3 在可见区的发射光谱,其激发光谱包括基质在真空紫外区的激发带和激活剂离子在紫外区的Eu^3 -O^2-电荷迁移带,随着La^3 ,Gd^3 ,Y^3 离子半径逐渐减小,Eu^3 -O^2-电荷迁移带的重心位置逐渐向高能量方向移动,Gd7O6(BO3)(PO4)2:Eu和Y7O6(BO3)(PO4)2:Eu在真空紫外区的吸收与Eu^3 -O^2-电荷迁移带位于紫外区的吸收的比值要高于在La7O6(BO3)(PO4)2:Eu中的这个比值,激发能可被基质吸收,传递给激活剂离子,得到Eu^3 的红光发射,在Gd7O6(BO3)(PO4)2:Eu中,^5D0→^7F1的发射强度较强,在Y7O6(BO3)(PO4)2:Eu中,^5D0→^7F2和^5D0→^7F3的跃迁较强。  相似文献   

5.
Ln(BO3,PO4)[Ln=La,Y]基质中Ce^3+、Tb^3+、Gd^3+的光谱   总被引:3,自引:0,他引:3  
研究了硼磷酸镧和硼磷酸钇基质中Ce^3 、Tb^3 、Gd^3 的发射光谱和激发光谱。结果表明:La(BO3,PO4):Ce,Tb体系中加入钆后,Ce^3 的 发射降低,Tb^3 的发射增强,Y(BO3,PO4):Ce,Tb体系中加入钆后,Ce^3 和Tb^3 的发射均增强,且前者增加的幅度高于后者。因此在La(BO3,PO4):Ce,Tb,Gd体系中Gd^3 离子起着能量传递中间体和敏化剂的作用;在Y(BO3,PO4):Ce,Tb,Gd体系中Gd^3 离子只起敏化剂作用,并且阻碍Ce^3 →Tb^3 的能量传递。与Y(BO3,PO4):Ce,Tb,Gd相比,La(BO3,PO4):Ce,Tb,Gd对紫外吸收强,254nm激发下发出的光绿色纯度,强度大,更适合做荧光灯中的绿粉。  相似文献   

6.
Eu3+和Tb3+掺杂的Y2SiO5体系发光特性研究   总被引:10,自引:0,他引:10  
采用溶胶-凝胶法合成了Eu^3 和Tb^3掺杂的Y2SiO5基发光材料,通过测量它们的激发光谱和发射光谱,研究了它们的发光特性,探讨了材料中Tb^3和Eu^3 两种发光中心间的能量关系。结果表明,Eu^3+在其中的特征发射以^5D0→^7F2电偶极跃迁为,Eu^3处于非反演对称中心格位;Tb^3在其中的发射为^5D4→^7FJ(J=4-6)跃迁发射。当Eu^3和Tb^3共存于Y2SiO5基质中时Eu^3的发射增强,Tb^3的发射减弱,存在Tb^3→Eu^3能量传递,Tb^3对Eu^3具有敏化作用。  相似文献   

7.
用非真空Bridgman方法制备了掺有Tb杂质的氟化铅(PbF2:Tb)晶体,闯杂浓度从0.008at.%至0.6at.%。在室温下测量了该晶体的吸收和发射光谱,发现该晶体在X-射线和紫外线激发下均能够发出比较强的荧光。FbF2:Tb晶体的光吸收起源于Tb^3 离子的4f-4f跃迁,而其光发射则源于Tb^3 离子的电子分别从其激发态^5D3和^5D4能级路迁到基态^7Fj(J=6,5,4,3,2)。 荧光强度随掺杂浓度的提高而提高,当Tb^3 离子浓度较低时,以^5D3→^7FJ跃迁发射为主,当Tb^3 离子浓度较高时,则以^5D4→^7FJ跃迁发射为主。在同一晶体中,发光强度随中心所占晶格位置的改变而改变,反映出Tb^3 离子在PbF2晶体中的分布具有分凝系数大于1的特征。推测Tb^3 离子在PbF2晶体中占据Pb格位,同时产生间隙F^-离子缺陷来平衡电价。  相似文献   

8.
LaPO4:Ce3+/Tb3+ 纳米线的合成和发光特性   总被引:2,自引:0,他引:2  
通过水热法合成出Ce^3 和Tb^3 共激活的LaPO4纳米线,并同相应的微米棒进行了比较。研究了其荧光光谱和动力学过程。结果表明纳米线和微米棒的晶体结构均为单斜相。在单掺杂Ce^3 和Tb^3 的材料中,微米棒的发光强度与纳米线相比稍有提高,但在共掺杂的纳米线样品中对应Ce^3 的激发,Tb^3 的^5D4→^7F5绿光发射比微米棒提高了3~5倍。通过动力学研究,纳米线中Ce^3 和Tb^3 的电子跃迁速率与微米棒对比没有显著的提高,且Ce^3 →Tb^3 的能量传递速率降低了3倍。Tb^3 的^53能级衰减包括两个过程:快过程和慢过程。纳米线以慢过程为主,而微米棒以快过程为主。我们认为慢过程对应^5D3→^5D4的弛豫,快过程对应^5D3向其他缺陷能级的跃迁。因此共掺杂纳米线中强度的提高被归因于在纳米线中更多的边界阻碍而引起在高于^5D4的激发态能级上损失的能量更少。  相似文献   

9.
用高温固相法合成了红色荧光粉Ca4(La1-x-yGdxYy)1-nO(BO3)3:nEu^3+(LnCOB:Eu,Ln=La1-x-y-GdxYy),并对其在真空紫外至可见范围的发光性质进行了系统的研究,找出发光较好的组分范围并与某些商品红色荧光粉进行了比较。LnCOB:Eu在254nm紫外线激发下的发射光谱为Eu^3+的^5D0→^7FJ(J=0,1,2,3,4)的特征跃迁。监测其最强的^5D0→^7F2发射线,其激发光谱在250nm左右有一个宽的激发带,归属于Eu-O电荷迁移带,适于用254nm汞线激发;在300—450nm有一些弱的归属于Eu^3+的f-f跃迁的锐吸收峰;在真空紫外区184—188nm附近有一个宽带,为基质吸收带,并可能包含了Eu^3+的f-d跃迁。在Ca4GdO0(BO3)3:Eu^3+的激发光谱中,还包含了Gd^3+的^8S7/2→^6GJ跃迁,此跃迁增强了荧光粉在184~188nm附近的激发强度。  相似文献   

10.
采用高温固相反应合成了(La1-xEux)(BO2)3,利用X射线粉末衍射方法确定其晶体结构,利用红外光谱探讨了[BO3]单元的聚合情况。根据(La1-xEux)(BO2)3所属空间群中等效点系的对称性分析及Eu^3 的荧光光谱,详细地探讨了Eu^3 的发光性质与其所处格位点对称性的关系。La(BO2)3:Eu^3 体系中,Eu^3 出现较强的^5D0→^7F1磁偶极路迁,因而Eu^3 主要占据点对称性为Ci的格位,出现的其它跃迁是部分Eu^3 占据偏离Ci的格位,而并非占据C2或C1格位,另外,^2D0→^7F4跃迁发射很强,其原因尚不清楚。选择适当的助熔剂可以提高样品的结晶程度,有利于Eu^3 占据严格的Ci格位,增强材料的发光性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号