首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
变参数四点法的理论及其应用   总被引:8,自引:0,他引:8  
四点插值细分法(简称四点法)是一种离散插值方法,在曲线和曲面造型中有着广泛的应用.本文主要讨论当参数可变时,四点法的收敛性和连续性以及变参数四点法的应用.  相似文献   

2.
提出了一类包含两个形状参数的双参数六点细分法,可以构造光滑插值曲线和光滑逼近曲线,并且可以通过对两个参数取值的调整使得曲线达到一致收敛,C1或C2.讨论了形状参数对细分法的收敛性及连续性的影响,给出了细分法一致收敛、C1连续、C2连续的充分条件,并给出了一些数值算例.  相似文献   

3.
本文提出了求值插值细分曲线上任意有理参数的算法.通过构造与细分格式相关的矩阵,m进制分解给定有理数以及特征分解循环节对应算子乘积,计算得到控制顶点权值,实现对称型静态均匀插值细分曲线的求值.本文给出了四点细分和四点Ternary细分曲线的求值实例.算法可以推广到求值其他非多项式细分格式中.  相似文献   

4.
《大学数学》2015,(5):108-113
提出了一种新的细分算法——六点Binary逼近细分法.利用生成多项式等方法对细分法的一致收敛性和Ck连续性进行了分析,通过对细分法中张力参数μ的不同取值,极限曲线可达到C~0~C~7连续.特别是当μ=11/1024时,极限曲线可达到C9连续.数值算例表明,该方法是合理有效的.  相似文献   

5.
由分段三次参数多项式曲线拼合成的C1插值曲线的形状与数据点处的切矢有很大关系.基于对保形插值曲线特点的分析,本文提出了估计数据点处切矢的一种方法:采用使构造的插值曲线的长度尽可能短的思想估计数据点处的切矢,并且通过四组有代表性的数据对本方法和已有的三种方法进行了比较.  相似文献   

6.
C^3连续的保形插值三角样本曲线   总被引:2,自引:0,他引:2  
本给出了构造保形插值曲线的三角样条方法,即在每两个型值点之间构造两段三次参数三角样条曲线。所构造的插值曲线是局部的,保形的和C^3连续的而且曲线的形状可由参数调节。  相似文献   

7.
《大学数学》2020,(3):1-7
提出了一种新的细分算法——五点二重融合型细分法.利用生成多项式对该细分法的一致收敛性和C~k连续性进行了分析,通过对融合型细分法中参数的不同取值,可以分别生成C~1~C~6连续的极限曲线.数值实例表明,与现有一些格式相比,细分算法生成的极限曲线不仅可以保持较高光滑性,并且更接近初始控制多边形.  相似文献   

8.
采用重心Lagrange插值配点法计算了二维Poisson方程.采用重心Lagrange插值法构造近似函数,由配点法离散Poisson方程及其边界条件.数值算例表明方法具有理论简单、计算精度高的特点.  相似文献   

9.
本文给出在平面上插值点列为凸的时,构造一类 C~2连续且保凸的插值三次参数样条曲线的方法.这里通过选择插值节点 P_i 处插值曲线 p(t)的切矢方向和长度来代替以往常用的参变量,从而得到一类新的方法.  相似文献   

10.
结合α-三角样条插值曲线的构造方法,本文具体构造了一类基于四点分段的α-B3样条插值曲线,并结合图例分析了其相关的一些性质及优缺点.  相似文献   

11.
Starting from a well-known construction of polynomial-based interpolatory 4-point schemes, in this paper we present an original affine combination of quadratic polynomial samples that leads to a non-uniform 4-point scheme with edge parameters. This blending-type formulation is then further generalized to provide a powerful subdivision algorithm that combines the fairing curve of a non-uniform refinement with the advantages of a shape-controlled interpolation method and an arbitrary point insertion rule. The result is a non-uniform interpolatory 4-point scheme that is unique in combining a number of distinctive properties. In fact it generates visually-pleasing limit curves where special features ranging from cusps and flat edges to point/edge tension effects may be included without creating undesired undulations. Moreover such a scheme is capable of inserting new points at any positions of existing intervals, so that the most convenient parameter values may be chosen as well as the intervals for insertion.Such a fully flexible curve scheme is a fundamental step towards the construction of high-quality interpolatory subdivision surfaces with features control.  相似文献   

12.
A criterion of convergence for stationary nonuniform subdivision schemes is provided. For periodic subdivision schemes, this criterion is optimal and can be applied to Hermite subdivision schemes which are not necessarily interpolatory. For the Merrien family of Hermite subdivision schemes which involve two parameters, we are able to describe explicitly the values of the parameters for which the Hermite subdivision scheme is convergent.  相似文献   

13.
In this paper we present a general strategy to deduce a family of interpolatory masks from a symmetric Hurwitz non-interpolatory one. This brings back to a polynomial equation involving the symbol of the non-interpolatory scheme we start with. The solution of the polynomial equation here proposed, tailored for symmetric Hurwitz subdivision symbols, leads to an efficient procedure for the computation of the coefficients of the corresponding family of interpolatory masks. Several examples of interpolatory masks associated with classical approximating masks are given.  相似文献   

14.
Nira Dyn等提出的四点插值法是一种典型的自由曲线离散造型方法,但该方法不能控制插值点的切向。本文利用薄板样很可能 量的极小化原理给出了具有切向控制的四点分插值条件。用户可以方便地交互控制任一插值点的切向,使得四点插值法更为有效和实用。  相似文献   

15.
Hermite subdivision schemes have been studied by Merrien, Dyn, and Levin and they appear to be very different from subdivision schemes analyzed before since the rules depend on the subdivision level. As suggested by Dyn and Levin, it is possible to transform the initial scheme into a uniform stationary vector subdivision scheme which can be handled more easily.With this transformation, the study of convergence of Hermite subdivision schemes is reduced to that of vector stationary subdivision schemes. We propose a first criterion for C0-convergence for a large class of vector subdivision schemes. This gives a criterion for C1-convergence of Hermite subdivision schemes. It can be noticed that these schemes do not have to be interpolatory. We conclude by investigating spectral properties of Hermite schemes and other necessary/sufficient conditions of convergence.  相似文献   

16.
A.Mehaute和F.Utreras(1994)给出了一种平面函数型保凸插值构造光滑曲线的方法(以下简称为M-U方法).本文在利用其方法本质的基础上,给出了一种平面上参数型保凸插值构造光滑曲线的方法,同Mehaute和Utreras的方法一样,这里的方法也有局部性.另外这种方法还可以构造平面上的封闭曲线.  相似文献   

17.
It is well known that the critical Hölder regularity of a subdivision schemes can typically be expressed in terms of the joint-spectral radius (JSR) of two operators restricted to a common finite-dimensional invariant subspace. In this article, we investigate interpolatory Hermite subdivision schemes in dimension one and specifically those with optimal accuracy orders. The latter include as special cases the well-known Lagrange interpolatory subdivision schemes by Deslauriers and Dubuc. We first show how to express the critical Hölder regularity of such a scheme in terms of the joint-spectral radius of a matrix pair {F0,F1} given in a very explicit form. While the so-called finiteness conjecture for JSR is known to be not true in general, we conjecture that for such matrix pairs arising from Hermite interpolatory schemes of optimal accuracy orders a “strong finiteness conjecture” holds: ρ(F0,F1)=ρ(F0)=ρ(F1). We prove that this conjecture is a consequence of another conjectured property of Hermite interpolatory schemes which, in turn, is connected to a kind of positivity property of matrix polynomials. We also prove these conjectures in certain new cases using both time and frequency domain arguments; our study here strongly suggests the existence of a notion of “positive definiteness” for non-Hermitian matrices.  相似文献   

18.
Summary. This paper considers the distribution of inflection points and singularity on the parametric rational cubic curve, using much algebraic manipulation. Its use allows one to find a shape preserving interpolatory rational cubic curve of a planar data. Some numerical examples are given to illustrate usefulness of the method. Received April 30, 1995 / Revised version received January 15, 1996  相似文献   

19.
This paper is concerned with a family of nonstationary, interpolatory subdivision schemes that have the capability of reproducing functions in a finite-dimensional subspace of exponential polynomials. We give conditions for the existence and uniqueness of such schemes, and analyze their convergence and smoothness. It is shown that the refinement rules of an even-order exponentials reproducing scheme converge to the Dubuc—Deslauriers interpolatory scheme of the same order, and that both schemes have the same smoothness. Unlike the stationary case, the application of a nonstationary scheme requires the computation of a different rule for each refinement level. We show that the rules of an exponentials reproducing scheme can be efficiently derived by means of an auxiliary orthogonal scheme , using only linear operations. The orthogonal schemes are also very useful tools in fitting an appropriate space of exponential polynomials to a given data sequence.  相似文献   

20.
We propose a general study of the convergence of a Hermite subdivision scheme ℋ of degree d>0 in dimension 1. This is done by linking Hermite subdivision schemes and Taylor polynomials and by associating a so-called Taylor subdivision (vector) scheme . The main point of investigation is a spectral condition. If the subdivision scheme of the finite differences of is contractive, then is C 0 and ℋ is C d . We apply this result to two families of Hermite subdivision schemes. The first one is interpolatory; the second one is a kind of corner cutting. Both of them use the Tchakalov-Obreshkov interpolation polynomial.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号