首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
单支方法的收敛性   总被引:1,自引:1,他引:0  
甘四清  孙耿 《应用数学》2001,14(3):30-33
本文讨论用单支方法数值求解一类多刚性时滞微分代数方程的收敛性。我们获得了A-稳定的且p阶经典相容的单支方法(时滞部分用线性插值)的整体误差估计。  相似文献   

2.
求解延迟微分代数方程的多步Runge-Kutta方法的渐近稳定性   总被引:4,自引:0,他引:4  
李宏智  李建国 《数学研究》2004,37(3):279-285
延迟微分代数方程(DDAEs)广泛出现于科学与工程应用领域.本文将多步Runge-Kutta方法应用于求解线性常系数延迟微分代数方程,讨论了该方法的渐近稳定性.数值试验表明该方法对求解DDAEs是有效的.  相似文献   

3.
张诚坚  金杰 《计算数学》2007,29(4):391-402
本文研究了求解刚性多滞量积分微分方程的Runge-Kutta方法的非线性稳定性和计算有效性.经典Runge—Kutta方法连同复合求积公式和Pouzet求积公式被改造用于求解一类刚性多滞量Volterra型积分微分方程.其分析导出了:在适当条件下,扩展的Runge-Kutta方法是渐近稳定和整体稳定的.此外,数值试验表明所给出的方法是高度有效的.  相似文献   

4.
对一般的热机械问题提出了一种有效的数值方法,并对二维的热弹性问题进行了测试.该方法的基本思路是将描述热机械耦合问题的偏微分方程进行降阶,使之成为一组微分代数方程,应力应变关系被写成代数方程.所得到的微分代数系统采用全隐式的向后差分公式进行求解.对该方法进行了详细的说明.为了验证该方法的有效性,将其应用于一个动态非耦合的热弹性问题的求解和一个耦合的二维热弹性问题的求解.  相似文献   

5.
余越昕  李寿佛 《计算数学》2007,29(4):359-366
最近,李寿佛建立了刚性Volterra泛函微分方程Runge_Kutta方法和一般线性方法的B-理论,其中代数稳定是数值方法B-稳定与B-收敛的首要条件,但梯形方法表示成Runge—Kutta方法的形式或一般线性方法的形式都不是代数稳定的,因此上述理论不适用于梯形方法.本文从另一途径出发,证明求解刚性Volterra泛函微分方程的梯形方法是B-稳定且2阶最佳B-收敛的,最后的数值试验验证了所获理论的正确性.  相似文献   

6.
采用弧坐标首先建立了在动载荷作用下,具有不连续性条件和初始位移的框架结构大变形分析的非线性数学模型.其次, 在空间区域内, 采用微分求积单元法(DQEM)来离散非线性数学模型, 并提出了在使用DQEM来求解结构大变形分析中,多个变量具有间断性条件的有效方法,得到了一组非线性DQEM的离散化方程,它是时间域内的一组具有奇异性的非线性微分-代数方程.同时也给出了求解非线性微分-代数方程组的一个解法A·D2作为应用,求解了受集中力和分布力作用的框架和组合框架的大变形静动力学问题,并与现有结果进行了比较.数值算例表明,处理多个变量具有间断性条件的方法和求解代数-微分系统的方法是一个有效的和一般的方法,它具有较少的节点、 较小的计算工作量、 较高的精度、良好的收敛性、 操作简单以及应用广泛等优点.  相似文献   

7.
一类stiff稳定的线性多步法   总被引:1,自引:0,他引:1  
顾云海  陈果良 《计算数学》1992,14(3):257-265
§1.引言 在常微分方程初值问题的数值方法中,线性多步法是最简单、使用最广泛的方法之一.但由于现存的线性多步方法的绝对稳定区域较小,以致在解刚性(Stiff)微分方程中受到很大限制.本文在BDF方法及[2]的基础上增加二个修正项,构造一类修正BDF的线性多步法,具有较大的绝对稳定区域.其结果如下:此类修正方法的阶与同步数的BDF方法的阶一致,其绝对稳定区域与低二阶的BDF方法大致相同,甚至更好,并给出了参数的取值范围.  相似文献   

8.
朱方生 《数学杂志》2001,21(2):183-188
在求解刚性常微分方程的数值解法中,为了使获得的结果稳定,人们往往使用具有L稳定和B稳定的数值方法,本文利用W-变换构造了一类具有L稳定和B[稳定的Runge-Kutta(RK)方法。  相似文献   

9.
魏金侠  单锐  刘文  靳飞 《应用数学》2012,25(3):691-696
为了解决二维非线性Volterra积分微分方程的求解问题,本文给出微分变换法.利用该方法将方程中的微分部分和积分部分进行变换,这样简化了原方程,进而得到非线性代数方程组,从而将原问题转换为求解非线性代数方程组的解,使得计算更简便.文中最后数值算例说明了该方法的可行性和有效性.  相似文献   

10.
通过在病态代数方程精细积分法的基础上增加一个迭代改善算法,建立了病态代数方程求解的改进精细积分法.该方法进一步提高了病态代数方程精细积分法的精度和效率,具有良好的应用前景.算例证明了该方法在病态代数方程求解中的有效性.  相似文献   

11.
Standard ODE methods such as linear multistep methods encounter difficulties when applied to differential-algebraic equations (DAEs) of index greater than 1. In particular, previous results for index 2 DAEs have practically ruled out the use of all explicit methods and of implicit multistep methods other than backward difference formulas (BDFs) because of stability considerations. In this paper we embed known results for semi-explicit index 1 and 2 DAEs in a more comprehensive theory based on compound multistep and one-leg discretizations. This explains and characterizes the necessary requirements that a method must fulfill in order to be applicable to semi-explicit DAEs. Thus we conclude that the most useful discretizations are those that avoid discretization of the constraint. A freer use of e.g. explicit methods for the non-stiff differential part of the DAE is then possible.Dedicated to Germund Dahlquist on the occasion of his 70th birthdayThis author thanks the Centro de Estadística y Software Matemático de la Universidad Simón Bolivar (CESMa) for permitting her free use of its research facilities.Partial support by the Swedish Research Council for Engineering Sciences TFR under contract no. 222/91-405.  相似文献   

12.
MULTISTEP DISCRETIZATION OF INDEX 3 DAES   总被引:1,自引:0,他引:1  
1. IntroductionIn this paper, we will consider the multistep discrezations of the differential--algebraicequations (DAEs) in Hessenberg formwhere F e AN M M R", K E AN M L - AM, G E AN - RL, the initial value(yo, ic, no) at xo are assumed to be consistent, i.e., they satisfyWe supposes, F, G and K are sufficiently differentiable, and thatin a neighbourhood of the solution. Such problems often appear in the simulation ofmechanical systems with constraints and the singularly perturbed…  相似文献   

13.
An approach to solve constrained minimization problems is to integrate a corresponding index 2 differential algebraic equation (DAE). Here, corresponding means that the ω-limit sets of the DAE dynamics are local solutions of the minimization problem. In order to obtain an efficient optimization code, we analyze the behavior of certain Runge–Kutta and linear multistep discretizations applied to these DAEs. It is shown that the discrete dynamics reproduces the geometric properties and the long-time behavior of the continuous system correctly. Finally, we compare the DAE approach with a classical SQP-method.  相似文献   

14.
A new index reduction approach is developed to solve the servo constraint problems [2] in the inverse dynamics simulation of underactuated mechanical systems. The servo constraint problem of underactuated systems is governed by differential algebraic equations (DAEs) with high index. The underlying equations of motion contain both holonomic constraints and servo constraints in which desired outputs (specified in time) are described in terms of state variables. The realization of servo constraints with the use of control forces can range from orthogonal to tangential [3]. Since the (differentiation) index of the DAEs is often higher than three for underactuated systems, in which the number of degrees of freedom is greater than the control outputs/inputs, we propose a new index reduction method [1] which makes possible the stable numerical integration of the DAEs. We apply the proposed method to differentially flat systems, such as cranes [1,4,5], and non-flat underactuated systems. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Summary. In the last few years there has been considerable research on numerical methods for differential algebraic equations (DAEs) where is identically singular. The index provides one measure of the singularity of a DAE. Most of the numerical analysis literature on DAEs to date has dealt with DAEs with indices no larger than three. Even in this case, the systems were often assumed to have a special structure. Recently a numerical method was proposed that could, in principle, be used to integrate general unstructured higher index solvable DAEs. However, that method did not preserve constraints. This paper will discuss a modification of that approach which can be used to design constraint preserving integrators for general nonlinear higher index DAEs. Received August 25, 1993 / Revised version received April 7, 1994  相似文献   

16.
在非线性科学中,寻求微分方程的近似解析解一直是重要的研究课题和研究热点.利用人工神经网络原理,结合最优化方法,研究了几类微分-代数方程的近似解析解,包括指标1,2,3型Hessenberg方程及指标3型Euler-Lagrange方程,得到了方程近似解析解的表达式.通过与精确解或Runge-Kutta(龙格-库塔)数值计算结果对比,表明神经网络方法的结果有很高的精度.  相似文献   

17.
In this article, linear regular index 2 DAEs A(t)[D(t)x(t)]′+B(t)x(t)=q(t) are considered. Using a decoupling technique, initial condition and boundary condition are properly formulated. Regular index 1 DAEs are obtained by a regularization method. We study the behavior of the solution of the regularization system via asymptotic expansions. The error analysis between the solutions of the DAEs and its regularization system is given.  相似文献   

18.
In the simulation of dynamical processes in economy, social sciences, biology or chemistry, the analyzed values often represent non-negative quantities like the amount of goods or individuals or the density of a chemical or biological species. Such systems are typically described by positive ordinary differential equations (ODEs) that have a non-negative solution for every non-negative initial value. Besides positivity, these processes often are subject to algebraic constraints that result from conservation laws, limitation of resources, or balance conditions and thus the models are differential-algebraic equations (DAEs). In this work, we present conditions under which both these properties, the positivity as well as the algebraic constraints, are preserved in the numerical simulation by Runge–Kutta or multistep discretization methods. Using a decomposition approach, we separate the dynamic and the algebraic equations of a given linear, positive DAE to give positivity preserving conditions for each part separately. For the dynamic part, we generalize the results for positive ODEs to DAEs using the solution representation via Drazin inverses. For the algebraic part, we use the consistency conditions of the discretization method to derive conditions under which this part of the approximation overestimates the exact solution and thus is non-negative. We analyze these conditions for some common Runge–Kutta and multistep methods and observe that for index-1 systems and stiffly accurate Runge–Kutta methods, positivity is conditionally preserved under similar conditions as for ODEs. For higher index problems, however, none of the common methods is suitable.  相似文献   

19.
The computation of consistent initial values for differential–algebraic equations (DAEs) is essential for starting a numerical integration. Based on the tractability index concept a method is proposed to filter those equations of a system of index-2 DAEs, whose differentiation leads to an index reduction. The considered equation class covers Hessenberg-systems and the equations arising from the simulation of electrical networks by means of Modified Nodal Analysis (MNA). The index reduction provides a method for the computation of the consistent initial values. The realized algorithm is described and illustrated by examples.  相似文献   

20.
Falk Ebert  Simone Bächle 《PAMM》2006,6(1):731-732
The numerical simulation of very large scale integrated circuits is an important tool in the development of new industrial circuits. In the course of the last years, this topic has received increasing attention. Common modeling approaches for circuits lead to differential-algebraic systems (DAEs). In circuit simulation, these DAEs are known to have index 2, given some topological properties of the network. This higher index leads to several undesirable effects in the numerical solution of the DAEs. Recent approaches try to lower the index of DAEs to improve the numerical behaviour. These methods usually involve costly algebraic transformations of the equations. Especially, for large scale circuit equations, these transformations become too costly to be efficient. We will present methods that change the topology of the network itself, while replacing certain elements in oder to obtain a network that leads to a DAE of index 1, while not altering the analytical solution of the DAE. This procedure can be performed prior to the actual numerical simulation. The decreasing of the index usually leads to significantly improved numerical behaviour. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号