首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Problems for parabolic partial differential equations with nonlocal boundary conditions have been studied in many articles, but boundary value problems for hyperbolic partial differential equations have so far remained nearly uninvestigated. In this article a numerical technique is presented for the solution of a nonclassical problem for the one‐dimensional wave equation. This method uses the cubic B‐spline scaling functions. Some numerical results are reported to support our study. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

2.
Numerical solution of hyperbolic partial differential equation with an integral condition continues to be a major research area with widespread applications in modern physics and technology. Many physical phenomena are modeled by nonclassical hyperbolic boundary value problems with nonlocal boundary conditions. In place of the classical specification of boundary data, we impose a nonlocal boundary condition. Partial differential equations with nonlocal boundary specifications have received much attention in last 20 years. However, most of the articles were directed to the second‐order parabolic equation, particularly to heat conduction equation. We will deal here with new type of nonlocal boundary value problem that is the solution of hyperbolic partial differential equations with nonlocal boundary specifications. These nonlocal conditions arise mainly when the data on the boundary can not be measured directly. Several finite difference methods have been proposed for the numerical solution of this one‐dimensional nonclassic boundary value problem. These computational techniques are compared using the largest error terms in the resulting modified equivalent partial differential equation. Numerical results supporting theoretical expectations are given. Restrictions on using higher order computational techniques for the studied problem are discussed. Suitable references on various physical applications and the theoretical aspects of solutions are introduced at the end of this article. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

3.
In this article, a new method is introduced for finding the exact solution of the product form of parabolic equation with nonlocal boundary conditions. Approximation solution of the present problem is implemented by the Ritz–Galerkin method in Bernoulli polynomials basis. The properties of Bernoulli polynomials are first presented, then Ritz–Galerkin method in Bernoulli polynomials is used to reduce the given differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the techniques presented in this article for finding the exact and approximation solutions. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1143–1158, 2017  相似文献   

4.
The paper is devoted to the investigation of a parabolic partial differential equation with non‐local and time‐dependent boundary conditions arising from ductal carcinoma in situ model. Approximation solution of the present problem is implemented by the Ritz–Galerkin method, which is a first attempt at tackling parabolic equation with such non‐classical boundary conditions. In the process of dealing with the difficulty caused by integral term in non‐local boundary condition, we use a trick of introducing the transition function G(x,t) to convert non‐local boundary to another non‐classical boundary, which can be handled with the Ritz–Galerkin method. Illustrative examples are included to demonstrate the validity and applicability of the technique in this paper. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Some physical problems in science and engineering are modelled by the parabolic partial differential equations with nonlocal boundary specifications. In this paper, a numerical method which employs the Bernstein polynomials basis is implemented to give the approximate solution of a parabolic partial differential equation with boundary integral conditions. The properties of Bernstein polynomials, and the operational matrices for integration, differentiation and the product are introduced and are utilized to reduce the solution of the given parabolic partial differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the new technique.  相似文献   

6.
In this paper, we are going to deal with the nonlocal mixed boundary value problem for the Moore‐Gibson‐Thompson equation. Galerkin method was the main used tool for proving the solvability of the given nonlocal problem.  相似文献   

7.
The purpose of the study is to analyze the time‐fractional reaction‐diffusion equation with nonlocal boundary condition. The proposed model is used to predict the invasion of tumor and its growth. Further, we establish the existence and uniqueness of a weak solution of the proposed model using the Faedo‐Galerkin method and compactness arguments.  相似文献   

8.
The pseudo‐spectral Legendre–Galerkin method (PS‐LGM) is applied to solve a nonlinear partial integro‐differential equation arising in population dynamics. This equation is a competition model in which similar individuals are competing for the same resources. It is a kind of reaction–diffusion equation with integral term corresponding to nonlocal consumption of resources. The proposed method is based on the Legendre–Galerkin formulation for the linear terms and interpolation operator at the Chebyshev–Gauss–Lobatto (CGL) points for the nonlinear terms. Also, the integral term, which is a kind of convolution, is directly computed by a fast and accurate method based on CGL interpolation operator, and thus, the use of any quadrature formula in its computation is avoided. The main difference of the PS‐LGM presented in the current paper with the classic LGM is in treating the nonlinear terms and imposing boundary conditions. Indeed, in the PS‐LGM, the nonlinear terms are efficiently handled using the CGL points, and also the boundary conditions are imposed strongly as collocation methods. Combination of the PS‐LGM with a semi‐implicit time integration method such as second‐order backward differentiation formula and Adams‐Bashforth method leads to reducing the complexity of computations and obtaining a linear algebraic system of equations with banded coefficient matrix. The desired equation is considered on one and two‐dimensional spatial domains. Efficiency, accuracy, and convergence of the proposed method are demonstrated numerically in both cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
In this article, we continue the numerical study of hyperbolic partial differential‐difference equation that was initiated in (Sharma and Singh, Appl Math Comput 9 ). In Sharma and Singh, the authors consider the problem with sufficiently small shift arguments. The term negative shift and positive shift are used for delay and advance arguments, respectively. Here, we propose a numerical scheme that works nicely irrespective of the size of shift arguments. In this article, we consider hyperbolic partial differential‐difference equation with negative or positive shift and present a numerical scheme based on the finite difference method for solving such type of initial and boundary value problems. The proposed numerical scheme is analyzed for stability and convergence in L norm. Finally, some test examples are given to validate convergence, the computational efficiency of the numerical scheme and the effect of shift arguments on the solution.© 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

10.
The fully Sinc‐Galerkin method is developed for a family of complex‐valued partial differential equations with time‐dependent boundary conditions. The Sinc‐Galerkin discrete system is formulated and represented by a Kronecker product form of those equations. The numerical solution is efficiently calculated and the method exhibits an exponential convergence rate. Several examples, some with a real‐valued solution and some with a complex‐valued solution, are used to demonstrate the performance of this method. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

11.
In the spectral Petrov‐Galerkin methods, the trial and test functions are required to satisfy particular boundary conditions. By a suitable linear combination of orthogonal polynomials, a basis, that is called the modal basis, is obtained. In this paper, we extend this idea to the nonorthogonal dual Bernstein polynomials. A compact general formula is derived for the modal basis functions based on dual Bernstein polynomials. Then, we present a Bernstein‐spectral Petrov‐Galerkin method for a class of time fractional partial differential equations with Caputo derivative. It is shown that the method leads to banded sparse linear systems for problems with constant coefficients. Some numerical examples are provided to show the efficiency and the spectral accuracy of the method.  相似文献   

12.
We study a second order hyperbolic initial‐boundary value partial differential equation (PDE) with memory that results in an integro‐differential equation with a convolution kernel. The kernel is assumed to be either smooth or no worse than weakly singular, that arise for example, in linear and fractional order viscoelasticity. Existence and uniqueness of the spatial local and global Galerkin approximation of the problem is proved by means of Picard's iteration. Then, spatial finite element approximation of the problem is formulated, and optimal order a priori estimates are proved by the energy method. The required regularity of the solution, for the optimal order of convergence, is the same as minimum regularity of the solution for second order hyperbolic PDEs. Spatial rate of convergence of the finite element approximation is illustrated by a numerical example. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 548–563, 2016  相似文献   

13.
The hyperbolic partial differential equation with an integral condition arises in many physical phenomena. In this research a numerical technique is developed for the one‐dimensional hyperbolic equation that combine classical and integral boundary conditions. The proposed method is based on shifted Legendre tau technique. Illustrative examples are included to demonstrate the validity and applicability of the presented technique. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 282–292, 2007  相似文献   

14.
We propose a nonintrusive reduced‐order modeling method based on the notion of space‐time‐parameter proper orthogonal decomposition (POD) for approximating the solution of nonlinear parametrized time‐dependent partial differential equations. A two‐level POD method is introduced for constructing spatial and temporal basis functions with special properties such that the reduced‐order model satisfies the boundary and initial conditions by construction. A radial basis function approximation method is used to estimate the undetermined coefficients in the reduced‐order model without resorting to Galerkin projection. This nonintrusive approach enables the application of our approach to general problems with complicated nonlinearity terms. Numerical studies are presented for the parametrized Burgers' equation and a parametrized convection‐reaction‐diffusion problem. We demonstrate that our approach leads to reduced‐order models that accurately capture the behavior of the field variables as a function of the spatial coordinates, the parameter vector and time. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

15.
In the current article, we investigate the RBF solution of second‐order two‐space dimensional linear hyperbolic telegraph equation. For this purpose, we use a combination of boundary knot method (BKM) and analog equation method (AEM). The BKM is a meshfree, boundary‐only and integration‐free technique. The BKM is an alternative to the method of fundamental solution to avoid the fictitious boundary and to deal with low accuracy, singular integration and mesh generation. Also, on the basis of the AEM, the governing operator is substituted by an equivalent nonhomogeneous linear one with known fundamental solution under the same boundary conditions. Finally, several numerical results and discussions are demonstrated to show the accuracy and efficiency of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In this article, we introduce a high‐order accurate method for solving one‐space dimensional linear hyperbolic equation. We apply a compact finite difference approximation of fourth order for discretizing spatial derivative of linear hyperbolic equation and collocation method for the time component. The main property of this method additional to its high‐order accuracy due to the fourth order discretization of spatial derivative, is its unconditionally stability. In this technique the solution is approximated by a polynomial at each grid point that its coefficients are determined by solving a linear system of equations. Numerical results show that the compact finite difference approximation of fourth order and collocation method produce a very efficient method for solving the one‐space‐dimensional linear hyperbolic equation. We compare the numerical results of this paper with numerical results of (Mohanty, 3 .© 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

17.
In this work, we use the spectral Galerkin method to prove the existence of a pathwise unique mild solution of a fractional stochastic partial differential equation of Burgers type in a Hölder space. We get the temporal regularity, and using a combination of Galerkin and exponential‐Euler methods, we obtain a full discretization scheme of the solution. Moreover, we calculate the rates of convergence for both approximations (Galerkin and full discretization) with respect to time and to space.  相似文献   

18.
Pul'kina  L. S. 《Mathematical Notes》2003,74(3-4):411-421
In this paper, we study a mixed problem for the hyperbolic equation with a boundary Neumann condition and a nonlocal integral condition. We justify the assertion that there exists a unique generalized solution of the problem under consideration. The proof of uniqueness is based on an estimate, derived a priori, in the function space introduced in the paper, while the existence of a generalized solution is proved by the Galerkin method.  相似文献   

19.
Recently, it is found that telegraph equation is more suitable than ordinary diffusion equation in modeling reaction diffusion for such branches of sciences. In this article a numerical method for solving the one‐dimensional hyperbolic telegraph equation is presented. The method is based upon Legendre multiwavelet approximations. The properties of Legendre multiwavelet are first presented. These properties together with Galerkin method are then utilized to reduce the telegraph equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

20.
The first‐order of accuracy difference scheme for approximately solving the multipoint nonlocal boundary value problem for the differential equation in a Hilbert space H, with self‐adjoint positive definite operator A is presented. The stability estimates for the solution of this difference scheme are established. In applications, the stability estimates for the solution of difference schemes of the mixed type boundary value problems for hyperbolic–parabolic equations are obtained. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号