首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
基于害虫的生物控制和化学控制策略,考虑到化学杀虫剂对天敌的影响,利用脉冲微分方程建立了在不同的固定时刻分别喷洒杀虫剂和释放天敌的具有时滞的第III功能反应的捕食者-食饵脉冲动力系统.证明了当脉冲周期小于某个临界值时,系统存在一个渐进稳定的害虫灭绝周期解,否则系统持续生存.并用Matlab软件对害虫灭绝周期解及害虫周期爆发现象进行了数值模拟.  相似文献   

2.
分析了一类具部分依赖和脉冲作用的捕食系统,得到了食饵灭绝周期解局部稳定和系统持续生存条件.  相似文献   

3.
研究了食饵分布在不同斑块,捕食者具有阶段结构和收获的时滞脉冲的捕食-食饵模型.利用离散动力系统的频闪映射,得到了捕食者灭绝周期解的存在性和它的精确表达式.使用比较原理,得到了捕食者灭绝周期解全局渐近稳定的充分条件和系统的持久性.最后,用Matlab软件进行数值仿真验证了获得的结果.  相似文献   

4.
考虑到生物管理中不同时刻的脉冲出生和脉冲生物控制问题,我们研究了一类脉冲出生与食饵脉冲捕获的捕食-食饵模型,证明该系统的所有解是有界的,研究得到捕食者灭绝周期解的相关性质(解的存在性、解的稳定性和全局吸引性)和系统持久性,同时通过数值模拟验证相关理论结果.此外,当捕食者之间有相互干扰时,通过数值模拟进一步讨论系统的持久性,揭示了干扰因素对系统持久性的影响.  相似文献   

5.
具有脉冲效应和综合害虫控制的捕食系统   总被引:8,自引:1,他引:7  
本文通过生物控制和化学控制提出了具有周期脉冲效应与害虫控制的捕食系统. 系统保护天敌避免灭绝,在一些条件下可以使害虫灭绝.就是说当脉冲周期小于某一临界值时,存在全局稳定害虫灭绝周期解.脉冲周期增大大于临界值时,平凡害虫灭绝周期解失去稳定性并产生正周期解,利用分支理论来研究正周期解的存在性.进而,利用李雅普诺夫函数和比较定理确定了持续生存的条件.  相似文献   

6.
具有脉冲效应的两食饵一捕食者系统分析   总被引:1,自引:0,他引:1  
构建并分析了一个在固定时刻脉冲投放捕食者且具有功能性反应的两食饵一捕食者系统,应用脉冲比较定理和微分方程的分析方法,得到了食饵灭绝周期解稳定的条件和系统持续生存的条件,并数值分析了所得的理论结果.  相似文献   

7.
讨论了与害虫治理相关的一类捕食者具脉冲扰动与食饵具有化学控制的阶段结构时滞捕食-食饵模型,得到了害虫灭绝周期解的全局吸引和系统持久的充分条件,也证明了系统的所有解的一致完全有界.得出的结论为现实的害虫治理提供了可靠的策略依据.  相似文献   

8.
郭红建  宋新宇 《应用数学》2006,19(4):724-730
本文讨论了一类带有HollingⅡ类功能性反应和脉冲投放的一食饵两捕食者系统.运用Floquet和小振幅扰动理论,证明了当投放周期小于某个临界值时,系统食饵绝灭的周期解是全局渐近稳定的,同时研究了系统的持续生存.  相似文献   

9.
基于综合害虫防治,对具脉冲效应的Monod—Haldane功能反应的捕食系统进行了分析,根据Floquet乘子理论,获得了害虫灭绝周期解全局渐近稳定与系统持续生存的条件.并讨论了害虫灭绝周期解附近分支出非平凡周期解的问题,且文章利用Matlab软件对害虫灭绝周期解害虫周期爆发现象进行了数值模拟.  相似文献   

10.
研究一类具有脉冲效应和非单调功能反应的两个捕食者一个食饵害虫控制系统.通过脉冲微分方程的Floquet理论和小幅扰动方法,证明了当脉冲周期小于某个临界值时,系统存在一个渐近稳定的害虫根除周期解,否则系统是持续生存的.最后,通过数值实例,给出了一简单讨论.  相似文献   

11.
A kind of predator-prey system of Holling typeⅡand interaction perturbation with impulsive effect is presented.By using Floquet theory and small amplitude perturbations skills,the locally asymptotical stability of prey-eradication periodic solution and the permanence of the system are discussed and the corresponding threshold conditions are given respectively.Finally,the existence of positive periodic solution is investigated by the bifurcation theory.  相似文献   

12.
In this paper, an impulsive periodic predator–prey system with Watt-type functional response is investigated. By using the Floquet theory of linear periodic impulsive equation, the stability conditions for the prey-eradication positive periodic solution are given, and the boundedness of the system is proved. By the method of coincidence degree, the sufficient conditions for the existence of at least one strictly positive periodic solution are obtained. Furthermore, we give numerical analysis to confirm our theoretical results. It will be useful for ecosystem control.  相似文献   

13.
A kind of predator-prey system of Holling type Ⅱ and interaction perturbation with impulsive effect is presented.By using Floquet theory and small amplitude perturbations skills,the locally asymptotical stability of prey-eradication periodic solution and the permanence of the system are discussed and the corresponding threshold conditions are given respectively.Finally,the existence of positive periodic solution is investigated by the bifurcation theory.  相似文献   

14.
研究了综合害虫治理(IPM)策略下具有脉冲作用和食物助增捕食者种群的捕食系统.得到了害虫灭绝周期解全局渐近稳定和系统持续生存的条件.  相似文献   

15.
建立了一类具有Ivlev功能反应函数的捕食系统,引入二次脉冲对该系统中捕食者进行作用,讨论了系统的有界性,利用Floquet理论和小振幅扰动方法,得出了食饵灭绝的周期解的局部稳定性和该系统最终持久生存的条件.  相似文献   

16.
Based on the classical predator–prey system with Watt-type functional response, an impulsive differential equations to model the process of periodic perturbations on the predator at different fixed time for pest control is proposed and investigated. It proves that there exists a globally asymptotically stable prey-eradication periodic solution when the impulse period is less than some critical value, and otherwise, the system can be permanent. Numerical results show that the system considered has more complicated dynamics involving quasi-periodic oscillation, narrow periodic window, wide periodic window, chaotic bands, period doubling bifurcation, symmetry-breaking pitchfork bifurcation, period-halving bifurcation and “crises”, etc. It will be useful for studying the dynamic complexity of ecosystems.  相似文献   

17.
A predator–prey system with group defense and impulsive control strategy is established. By using Floquet theorem and small amplitude perturbation skills, a locally asymptotically stable prey-eradication periodic solution is obtained when the impulsive period is less than some critical value. Otherwise, if the impulsive period is larger than the critical value, the system is permanent. By using bifurcation theory, we show the existence and stability of positive periodic solution when the pest-eradication lost its stability. Further, numerical examples show that the system considered has more complicated dynamics, such as: (1) quasi-periodic oscillating, (2) period-doubling bifurcation, (3) period-halving bifurcation, (4) non-unique dynamics (meaning that several attractors coexist), (5) attractor crisis, etc. Finally, the biological implications of the results and the impulsive control strategy are discussed.  相似文献   

18.
Predator–prey system with non-monotonic functional response and impulsive perturbations on the predator is established. By using Floquet theorem and small amplitude perturbation skills, a locally asymptotically stable prey-eradication periodic solution is obtained when the impulsive period is less than the critical value. Otherwise, if the impulsive period is larger than the critical value, the system is permanent. Further, using numerical simulation method the influences of the impulsive perturbations on the inherent oscillation are investigated. With the increasing of the impulsive value, the system displays a series of complex phenomena, which include (1) quasi-periodic oscillating, (2) period-doubling, (3) period-halfing, (4) non-unique dynamics (meaning that several attractors coexist), (5) attractor crisis and (6) chaotic bands with periodic windows.  相似文献   

19.
In this paper, the predator–prey system with the Beddington–DeAngelis functional response is developed, by introducing a proportional periodic impulsive catching or poisoning for the prey populations and a constant periodic releasing for the predator. The Beddington–DeAngelis functional response is similar to the Holling type II functional response but contains an extra term describing mutual interference by predators. This model has the potential to protect predator from extinction, but under some conditions may also lead to extinction of the prey. That is, the system exists a locally stable prey-eradication periodic solution when the impulsive period satisfies an inequality. The condition for permanence is established via the method of comparison involving multiple Liapunov̀ functions. Further, by numerical simulation method the influences of the impulsive perturbations and mutual interference by predators on the inherent oscillation are investigated. With the increasing of releasing for the predator, the system appears a series of complex phenomenon, which include (1) period-doubling, (2) chaos attractor, (3) period-halfing. (4) non-unique dynamics (meaning that several attractors coexist).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号