首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Simple algebras of Weyl type   总被引:9,自引:0,他引:9  
Over a fieldF of arbitrary characteristic, we define the associative and the Lie algebras of Weyl type on the same vector spaceA[D] =AF[D] from any pair of a commutative associative algebra,A with an identity element and the polynomial algebraF[D] of a commutative derivation subalgebraD ofA We prove thatA[D], as a Lie algebra (modulo its center) or as an associative algebra, is simple if and only ifA isD-simple andA[D] acts faithfully onA. Thus we obtain a lot of simple algebras. Su, Y., Zhao, K., Second cohornology group of generalized Witt type Lie algebras and certain representations, submitted to publication  相似文献   

2.
3.
《代数通讯》2013,41(7):3271-3285
Abstract

Let k be a field with char k = p > 0 and G an abelian group with a bicharacter λ on G. For each p-(G,λ)-Lie color algebra L over k the p-universal enveloping algebra u(L) is a G-graded Hopf algebra,i.e.,a Hopf algebra in the category kG ? of kG-comodules. In this paper we describe a subcategory of kG ? which is equivalent to the category of the finite dimensional p-(G,λ)-Lie color algebras over k.  相似文献   

4.
Let G be an abelian group, ε an anti-bicharacter of G and L a G-graded ε Lie algebra (color Lie algebra) over a field of characteristic zero. We prove that for all G-graded, positively filtered A such that the associated graded algebra is isomorphic to the G-graded ε-symmetric algebra S(L), there is a G- graded ε-Lie algebra L and a G-graded scalar two cocycle , such that A is isomorphic to U ω (L) the generalized enveloping algebra of L associated with ω. We also prove there is an isomorphism of graded spaces between the Hochschild cohomology of the generalized universal enveloping algebra U(L) and the generalized cohomology of the color Lie algebra L. Supported by the EC project Liegrits MCRTN 505078.  相似文献   

5.
A Poisson algebra is a Lie algebra endowed with a commutative associative product in such a way that the Lie and associative products are compatible via a Leibniz rule. If we part from a Lie color algebra, instead of a Lie algebra, a graded-commutative associative product and a graded-version Leibniz rule we get a so-called Poisson color algebra (of degree zero). This concept can be extended to any degree, so as to obtain the class of Poisson color algebras of arbitrary degree. This class turns out to be a wide class of algebras containing the ones of Lie color algebras (and so Lie superalgebras and Lie algebras), Poisson algebras, graded Poisson algebras, z-Poisson algebras, Gerstenhaber algebras, and Schouten algebras among other classes of algebras. The present paper is devoted to the study of structure of Poisson color algebras of degree g0, where g0 is some element of the grading group G such that g0 = 0 or 4g0≠0, and with restrictions neither on the dimension nor the base field, by stating a second Wedderburn-type theorem for this class of algebras.  相似文献   

6.
We describe Novikov-Poisson algebras in which a Novikov algebra is not simple while its corresponding associative commutative derivation algebra is differentially simple. In particular, it is proved that a Novikov algebra is simple over a field of characteristic not 2 iff its associative commutative derivation algebra is differentially simple. The relationship is established between Novikov-Poisson algebras and Jordan superalgebras. Supported by RFBR (grant No. 05-01-00230), by SB RAS (Integration project No. 1.9), and by the Council for Grants (under RF President) and State Aid of Leading Scientific Schools (project NSh-344.2008.1). __________ Translated from Algebra i Logika, Vol. 47, No. 2, pp. 186–202, March–April, 2008.  相似文献   

7.
In this brief note, we see that if A is a proper uniform algebra on a compact Hausdorff space X, then A is flat.   相似文献   

8.
A Lie module algebra for a Lie algebra L is an algebra and L-module A such that L acts on A by derivations. The depth Lie algebra of a Lie algebra L with Lie module algebra A acts on a corresponding depth Lie module algebra . This determines a depth functor from the category of Lie module algebra pairs to itself. Remarkably, this functor preserves central simplicity. It follows that the Lie algebras corresponding to faithful central simple Lie module algebra pairs (A,L) with A commutative are simple. Upon iteration at such (A,L), the Lie algebras are simple for all i ∈ ω. In particular, the (i ∈ ω) corresponding to central simple Jordan Lie algops (A,L) are simple Lie algebras. Presented by Don Passman.  相似文献   

9.
All automorphisms of the standard Borel subalgebra of the symplectic algebra sp(2m,?R) are determined, provided that R is a commutative ring with identity, 2 is invertible in R.  相似文献   

10.
Let R be a unital semi-simple commutative complex Banach algebra, and let M(R) denote its maximal ideal space, equipped with the Gelfand topology. Sufficient topological conditions are given on M(R) for R to be a projective free ring, that is, a ring in which every finitely generated projective R-module is free. Several examples are included, notably the Hardy algebra H(X) of bounded holomorphic functions on a Riemann surface of finite type, and also some algebras of stable transfer functions arising in control theory.  相似文献   

11.
For a topological group G we define N to be the set of all normalsubgroups modulo which G is a finite-dimensional Lie group.Call G a pro-Lie group if, firstly, G is complete, secondly,N is a filter basis, and thirdly, every identity neighborhoodof G contains some member of N. It is easy to see that everypro-Lie group G is a projective limit of the projective systemof all quotients of G modulo subgroups from N. The converseimplication emerges as a difficult proposition, but it is shownhere that any projective limit of finite-dimensional Lie groupsis a pro-Lie group. It is also shown that a closed subgroupof a pro-Lie group is a pro-Lie group, and that for any closednormal subgroup N of a pro-Lie group G, for any one parametersubgroup Y : R G/N there is a one parameter subgroup X : R G such that X(t) N = Y(t) for any real number t. The categoryof all pro-Lie groups and continuous group homomorphisms betweenthem is closed under the formation of all limits in the categoryof topological groups and the Lie algebra functor on the categoryof pro-Lie groups preserves all limits and quotients. 2000 MathematicsSubject Classification 22E65, 22D05, 22E20, 22A05, 54B35.  相似文献   

12.
For any finite commutative idempotent semigroup S, a semilattice, we show how to compute the amenability constant of its semigroup algebra 1(S). This amenability constant is always of the form 4n+1. We then show that these give lower bounds to amenability constants of certain Banach algebras graded over semilattices. We also give example of a commutative Clifford semigroups G n whose semigroup algebras 1(G n ) admit amenability constants of the form 41+4(n−1)/n. We also show there is no commutative semigroup whose semigroup algebra has an amenability constant between 5 and 9. N. Spronk’s research was supported by NSERC Grant 312515-05.  相似文献   

13.
14.
Let A be a semisimple and regular commutative Banach algebra with structure space Δ(A). Generalizing the notion of spectral sets in Δ(A), the considerably larger class of weak spectral sets was introduced and studied in [C.R. Warner, Weak spectral synthesis, Proc. Amer. Math. Soc. 99 (1987) 244-248]. We prove injection theorems for weak spectral sets and weak Ditkin sets and a Ditkin-Shilov type theorem, which applies to projective tensor products. In addition, we show that weak spectral synthesis holds for the Fourier algebra A(G) of a locally compact group G if and only if G is discrete.  相似文献   

15.
In this article, we describe all group gradings by a finite abelian group Γ of a simple Lie algebra of type G 2 over an algebraically closed field F of characteristic zero.  相似文献   

16.
A host algebra of a topological group G is a C *-algebra whose representations are in one-to-one correspondence with certain continuous unitary representations of G. In this paper we present an approach to host algebras for infinite dimensional Lie groups which is based on complex involutive semigroups. Any locally bounded absolute value α on such a semigroup S leads in a natural way to a C *-algebra C *(S,α), and we describe a setting which permits us to conclude that this C *-algebra is a host algebra for a Lie group G. We further explain how to attach to any such host algebra an invariant weak-*-closed convex set in the dual of the Lie algebra of G enjoying certain nice convex geometric properties. If G is the additive group of a locally convex space, we describe all host algebras arising this way. The general non-commutative case is left for the future. To K.H. Hofmann on the occasion of his 75th birthday  相似文献   

17.
Boris Širola 《代数通讯》2013,41(9):3267-3279
Suppose G 1 ?  G are complex linear simple Lie groups. Let 1 ?  be the corresponding pair of Lie algebras. For the Killing-orthogonal of 1 in we have a vector space direct sum  =  1, which generalizes the classical Cartan decomposition on the Lie algebras level. In this article we study the corresponding problem of a ‘generalized global Cartan decomposition’ on the Lie groups level for the pair of groups ( G , G 1) = (SL (4,?),Sp (2,?)); here  =  (4,?), 1 =  (2,?), and  = {X ?  | X ? = X}, where X? X ? is the symplectic involution. We prove that G  =  G 1exp  ∪ i G 1exp . The key point of the proof is to study in detail the set exp ; and for that purpose we introduce the J-twisted Pfaffian of size 2n defined on the set of all 2n × 2n matrices X satisfying X ? = X, which is here a natural counterpart of the standard Pfaffian.  相似文献   

18.
Let 𝒩(∞,R) be the Lie algebra of infinite strictly upper triangular matrices over a commutative ring R. We show that every derivation of 𝒩(∞,R) is a sum of diagonal and inner derivations.  相似文献   

19.
Isomorphism classes and automorphism groups of algebras of Weyl type   总被引:6,自引:0,他引:6  
In one of our recent papers, the associative and the Lie algebras of Weyl typeA[D]=A⊗F[D] were defined and studied, whereA is a commutative associative algebra with an identity element over a field F of any characteristic, and F[D] is the polynomial algebra of a commutative derivation subalgebraD ofA. In the present paper, a class of the above associative and Lie algebrasA[D] with F being a field of characteristic 0,D consisting of locally finite but not locally nilpotent derivations ofA, are studied. The isomorphism classes and automorphism groups of these associative and Lie algebras are determined  相似文献   

20.
For each pair (??,??) consisting of a real Lie algebra ?? and a subalgebra a of some Cartan subalgebra ?? of ?? such that [??, ??]∪ [??, ??] we define a Weyl group W(??, ??) and show that it is finite. In particular, W(??, ??,) is finite for any Cartan subalgebra h. The proof involves the embedding of 0 into the Lie algebra of a complex algebraic linear Lie group to which the structure theory of Lie algebras and algebraic groups is applied. If G is a real connected Lie group with Lie algebra ??, the normalizer N(??, G) acts on the finite set Λ of roots of the complexification ??c with respect to hc, giving a representation π : N(??, G)→ S(Λ) into the symmetric group on the set Λ. We call the kernel of this map the Cartan subgroup C(??) of G with respect to h; the image is isomorphic to W(??, ??), and C(??)= {g G : Ad(g)(h)— h ε [h,h] for all h ε h }. All concepts introduced and discussed reduce in special situations to the familiar ones. The information on the finiteness of the Weyl groups is applied to show that under very general circumstance, for b ∪ ?? the set ??? ?(b) remains finite as ? ranges through the full group of inner automorphisms of ??.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号