首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a one-step optimal approach is proposed to improve the computational efficiency of the homotopy analysis method (HAM) for nonlinear problems. A generalized homotopy equation is first expressed by means of a unknown embedding function in Taylor series, whose coefficient is then determined one by one by minimizing the square residual error of the governing equation. Since at each order of approximation, only one algebraic equation with one unknown variable is solved, the computational efficiency is significantly improved, especially for high-order approximations. Some examples are used to illustrate the validity of this one-step optimal approach, which indicate that convergent series solution can be obtained by the optimal homotopy analysis method with much less CPU time. Using this one-step optimal approach, the homotopy analysis method might be applied to solve rather complicated differential equations with strong nonlinearity.  相似文献   

2.
In this paper, by means of the homotopy analysis method (HAM), the solutions of some Schrodinger equations are exactly obtained in the form of convergent Taylor series. The HAM contains the auxiliary parameter ?, that provides a convenient way of controlling the convergent region of series solutions. This analytical method is employed to solve linear and nonlinear examples to obtain the exact solutions. HAM is a powerful and easy-to-use analytic tool for nonlinear problems.  相似文献   

3.
The homotopy method for the solution of nonlinear equations is revisited in the present study. An analytic method is proposed for determining the valid region of convergence of control parameter of the homotopy series, as an alternative to the classical way of adjusting the region through graphical analysis. Illustrative examples are presented to exhibit a vivid comparison between the homotopy perturbation method (HPM) and the homotopy analysis method (HAM). For special choices of the initial guesses it is shown that the convergence-control parameter does not cover the HPM. In such cases, blindly using the HPM yields a non convergence series to the sought solution. In addition to this, HPM is shown not always to generate a continuous family of solutions in terms of the homotopy parameter. By the convergence-control parameter this can however be prevented to occur in the HAM.  相似文献   

4.
In this work, the homotopy analysis method (HAM) is applied to obtain the explicit analytical solutions for system of the Jaulent–Miodek equations. The validity of the method is verified by comparing the approximation series solutions with the exact solutions. Unlike perturbation methods, the HAM does not depend on any small physical parameters at all. Thus, it is valid for both weakly and strongly nonlinear problems. Besides, different from all other analytic techniques, the HAM provides us a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter ?. Briefly speaking, this work verifies the validity and the potential of the HAM for the study of nonlinear systems. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

5.
In this paper, we apply the homotopy analysis method (HAM) to solve the fractional Volterra’s model for population growth of a species in a closed system. This technique is extended to give solutions for nonlinear fractional integro–differential equations. The whole HAM solution procedure for nonlinear fractional differential equations is established. Further, the accurate analytical approximations are obtained for the first time, which are valid and convergent for all time t. This indicates the validity and great potential of the homotopy analysis method for solving nonlinear fractional integro–differential equations.  相似文献   

6.
An analytic method for strongly non-linear problems, namely the homotopy analysis method (HAM), is applied to give convergent series solution of non-similarity boundary-layer flows. As an example, the non-similarity boundary-layer flows over a stretching flat sheet are used to show the validity of this general analytic approach. Without any assumptions of small/large quantities, the corresponding non-linear partial differential equation with variable coefficients is transferred into an infinite number of linear ordinary differential equations with constant coefficients. More importantly, an auxiliary artificial parameter is used to ensure the convergence of the series solution. Different from previous analytic results, our series solutions are convergent and valid for all physical variables in the whole domain of flows. This work illustrates that, by means of the homotopy analysis method, the non-similarity boundary-layer flows can be solved in a similar way like similarity boundary-layer flows. Mathematically, this analytic approach is rather general in principle and can be applied to solve different types of non-linear partial differential equations with variable coefficients in science and engineering.  相似文献   

7.
In this paper, the problem of laminar viscous flow in a semi-porous channel in the presence of a transverse magnetic field is presented and the homotopy analysis method (HAM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing the problem. It has been attempted to show the capabilities and wide-range applications of the homotopy analysis method in comparison with the numerical method in solving this problem. The obtained solutions, in comparison with the numeric solutions admit a remarkable accuracy. A clear conclusion can be drawn from the numerical method’s (NM) results that the HAM provides highly accurate solutions for nonlinear differential equations.  相似文献   

8.
In this paper the SIR and SIS epidemic models in biology are solved by means of an analytic technique for nonlinear problems, namely the homotopy analysis method (HAM). Both of the SIR and SIS models are described by coupled nonlinear differential equations. A one-parameter family of explicit series solutions are obtained for both models. This parameter has no physical meaning but provides us with a simple way to ensure convergent series solutions to the epidemic models. Our analytic results agree well with the numerical ones. This analytic approach is general and can be applied to get convergent series solutions of some other coupled nonlinear differential equations in biology.  相似文献   

9.
The generalized Taylor theorem is the foundation of the homotopy analysis method proposed by Liao. This theorem is interesting but hard to understand from the mathematical point of view. Especially, there is a key parameter h whose meaning is still unknown. In the paper, we derive the generalized Taylor theorem from a usual way, that is, we prove that the generalized Taylor expansion is equivalent to a different representation of the usual Taylor expansion at different points. Therefore the meaning of the auxiliary parameter h is clarified. These results give a reasonable explanation of the parameter h and uncover the essence of the generalized Taylor theorem from which we can deeply understand the homotopy analysis method. Through the detailed analysis of some examples, we compare the series solution at the different points with the generalized Taylor series solution obtained by the homotopy analysis method.  相似文献   

10.
This paper derives an explicit series approximation solution for the optimal exercise boundary of an American put option by means of a new analytical method for strongly nonlinear problems, namely the homotopy analysis method (HAM). The Black–Sholes equation subject to the moving boundary conditions for an American put option is transferred into an infinite number of linear sub-problems in a fixed domain through the deformation equations. Different from perturbation/asymptotic approximations, the HAM approximation can be applicable for options with much longer expiry. Accuracy tests are made in comparison with numerical solutions. It is found that the current approximation is as accurate as many numerical methods. Considering its explicit form of expression, it can bring great convenience to the market practitioners.  相似文献   

11.
In this article, the approximate solution of nonlinear heat diffusion and heat transfer equation are developed via homotopy analysis method (HAM). This method is a strong and easy‐to‐use analytic tool for investigating nonlinear problems, which does not need small parameters. HAM contains the auxiliary parameter ?, which provides us with a simple way to adjust and control the convergence region of solution series. By suitable choice of the auxiliary parameter ?, we can obtain reasonable solutions for large modulus. In this study, we compare HAM results, with those of homotopy perturbation method and the exact solutions. The first differential equation to be solved is a straight fin with a temperature‐dependent thermal conductivity and the second one is the two‐ and three‐dimensional unsteady diffusion problems. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

12.
In this paper, we use homotopy analysis method (HAM) to solve two‐point nonlinear boundary value problems that have at least one solution. The new approach provides the solution in the form of a rapidly convergent series with easily computable components using symbolic computation software. The scheme shows importance of choice of convergence‐control parameter ? to guarantee the convergence of the solutions of nonlinear differential equations. This scheme is tested on three nonlinear exactly solvable differential equations. Two of the examples are practical in science and engineering. The results demonstrate reliability, simplicity and efficiency of the algorithm developed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Series Solutions of Systems of Nonlinear Fractional Differential Equations   总被引:1,自引:0,他引:1  
Differential equations of fractional order appear in many applications in physics, chemistry and engineering. An effective and easy-to-use method for solving such equations is needed. In this paper, series solutions of the FDEs are presented using the homotopy analysis method (HAM). The HAM provides a convenient way of controlling the convergence region and rate of the series solution. It is confirmed that the HAM series solutions contain the Adomian decomposition method (ADM) solution as special cases.   相似文献   

14.
In this paper, the study the momentum and heat transfer characteristics in an incompressible electrically conducting non‐Newtonian boundary layer flow of a viscoelastic fluid over a stretching sheet. The partial differential equations governing the flow and heat transfer characteristics are converted into highly nonlinear coupled ordinary differential equations by similarity transformations. The resultant coupled highly nonlinear ordinary differential equations are solved by means of, homotopy analysis method (HAM) for constructing an approximate solution of heat transfer in magnetohydrodynamic (MHD) viscoelastic boundary layer flow over a stretching sheet with non‐uniform heat source. The proposed method is a strong and easy to use analytic tool for nonlinear problems and does not need small parameters in the equations. The HAM solutions contain an auxiry parameter, which provides a convenient way of controlling the convergence region of series solutions. The results obtained here reveal that the proposed method is very effective and simple for solving nonlinear evolution equations. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in physics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The traditional scaled boundary finite-element method (SBFEM) is a rather efficient semi-analytical technique widely applied in engineering, which is however valid mostly for linear differential equations. In this paper, the traditional SBFEM is combined with the homotopy analysis method (HAM), an analytic technique for strongly nonlinear problems: a nonlinear equation is first transformed into a series of linear equations by means of the HAM, and then solved by the traditional SBFEM. In this way, the traditional SBFEM is extended to nonlinear differential equations. A nonlinear heat transfer problem is used as an example to show the validity and computational efficiency of this new SBFEM.  相似文献   

16.
In this paper, an analytic approximation method for highly nonlinear equations, namely the homotopy analysis method (HAM), is employed to solve some backward stochastic differential equations (BSDEs) and forward-backward stochastic differential equations (FBSDEs), including one with high dimensionality (up to 12 dimensions). By means of the HAM, convergent series solutions can be quickly obtained with high accuracy for a FBSDE in a 6-dimensional case, within less than 1 % CPU time used by a currently reported numerical method for the same case [34]. Especially, as dimensionality enlarges, the increase of computational complexity for the HAM is not as dramatic as this numerical method. All of these demonstrate the validity and high efficiency of the HAM for the backward/forward-backward stochastic differential equations in science, engineering, and finance.  相似文献   

17.
In this paper, the homotopy analysis method (HAM) is presented to obtain the numerical solutions for the two kinds of the Painlevé equations with a number of initial conditions. Then, a numerical evaluation and comparison with the results obtained via the HAM are included. It illustrates the validity and the great potential of the HAM in solving Painlevé equations. Although the HAM contains the auxiliary parameter, the convergence region of the series solution can be controlled in a simple way. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper is concerned with the magnetohydrodynamic (MHD) flow of a Jeffery fluid in a porous channel. Series solution to the nonlinear problem is constructed by a powerful analytic approach namely the homotopy analysis method (HAM). Convergence of the series solution is established. The obtained solutions are analyzed by plotting graphs.  相似文献   

19.
Consideration is given to the homoclinic solutions of ordinary differential equations. We first review the Melnikov analysis to obtain Melnikov function, when the perturbation parameter is zero and when the differential equation has a hyperbolic equilibrium. Since Melnikov analysis fails, using Homotopy Analysis Method (HAM, see [Liao SJ. Beyond perturbation: introduction to the homotopy analysis method. Boca Raton: Chapman & Hall/CRC Press; 2003; Liao SJ. An explicit, totally analytic approximation of Blasius’ viscous flow problems. Int J Non-Linear Mech 1999;34(4):759–78; Liao SJ. On the homotopy analysis method for nonlinear problems. Appl Math Comput 2004;147(2):499–513] and others [Abbasbandy S. The application of the homotopy analysis method to nonlinear equations arising in heat transfer. Phys Lett A 2006;360:109–13; Hayat T, Sajid M. On analytic solution for thin film flow of a forth grade fluid down a vertical cylinder. Phys Lett A, in press; Sajid M, Hayat T, Asghar S. Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt. Nonlinear Dyn, in press]), we obtain homoclinic solution for a differential equation with zero perturbation parameter and with hyperbolic equilibrium. Then we show that the Melnikov type function can be obtained as a special case of this homotopy analysis method. Finally, homoclinic solutions are obtained (for nontrivial examples) analytically by HAM, and are presented through graphs.  相似文献   

20.
Optimal homotopy analysis method is a powerful tool for nonlinear differential equations. In this method, the convergence of the series solutions is controlled by one or more parameters which can be determined by minimizing a certain function. There are several approaches to determine the optimal values of these parameters, which can be divided into two categories, i.e. global optimization approach and step-by-step optimization approach. In the global optimization approach, all the parameters are optimized simultaneously at the last order of approximation. However, this process leads to a system of coupled, nonlinear algebraic equations in multiple variables which are very difficult to solve. In the step-by-step approach, the optimal values of these parameters are determined sequentially, that is, they are determined one by one at different orders of approximation. In this way, the computational efficiency is significantly improved, especially when high order of approximation is needed. In this paper, we provide extensive examples arising in similarity and non-similarity boundary layer theory to investigate the performance of these approaches. The results reveal that with the step-by-step approach, convergent solutions of high order of approximation can be obtained within much less CPU time, compared with the global approach and the traditional HAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号