首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Type II hidden symmetries are extra symmetries in addition to the inherited symmetries of the differential equations when the number of independent and dependent variables is reduced by a Lie-point symmetry. In [Gandarias RML. Type-II hidden symmetries through weak symmetries for nonlinear partial differential equations. J Math Anal Appl 2008;348:752–9] it was shown that the provenance of the Type II Lie point hidden symmetries found for differential equations can be explained by considering weak symmetries or conditional symmetries of the original PDE.In this paper we analyze the connection between one of the methods analyzed in [Abraham-Shrauner B, Govinder KS. Provenance of Type II hidden symmetries from nonlinear partial differential equations. J Nonlin Math Phys 2006;13:612–22] and the weak symmetries of some partial differential equations in order to determine the source of these hidden symmetries. We have considered some of the models presented in [Abraham-Shrauner B, Govinder KS. Provenance of Type II hidden symmetries from nonlinear partial differential equations. J Nonlin Math Phys 2006;13:612–22], as well as the linear two-dimensional and three-dimensional wave equations [Abraham-Shrauner B, Govinder KS, Arrigo JA. Type II hidden symmetries of the linear 2D and 3D wave equations. J h Phys A Math Theor 2006;39:5739–47].  相似文献   

2.
Hidden symmetries of differential equations are point symmetries that arise unexpectedly in the increase (equivalently decrease) of order, in the case of ordinary differential equations, and variables, in the case of partial differential equations. The origins of Type II hidden symmetries (obtained via reduction) for ordinary differential equations are understood to be either contact or nonlocal symmetries of the original equation while the origin for Type I hidden symmetries (obtained via increase of order) is understood to be nonlocal symmetries of the original equation. Thus far, it has been shown that the origin of hidden symmetries for partial differential equations is point symmetries of another partial differential equation of the same order as the original equation. Here we show that hidden symmetries can arise from contact and nonlocal/potential symmetries of the original equation, similar to the situation for ordinary differential equations.  相似文献   

3.
An approach for determining a class of master partial differential equations from which Type II hidden point symmetries are inherited is presented. As an example a model nonlinear partial differential equation (PDE) reduced to a target PDE by a Lie symmetry gains a Lie point symmetry that is not inherited (hidden) from the original PDE. On the other hand this Type II hidden symmetry is inherited from one or more of the class of master PDEs. The class of master PDEs is determined by the hidden symmetry reverse method. The reverse method is extended to determine symmetries of the master PDEs that are not inherited. We indicate why such methods are necessary to determine the genesis of Type II symmetries of PDEs as opposed to those that arise in ordinary differential equations (ODEs).  相似文献   

4.
We extend the work of Abraham-Shrauner [B. Abraham-Shrauner, Hidden symmetries and linearization of the modified Painlevé-Ince equation, J. Math. Phys. 34 (1993) 4809-4816] on the linearization of the modified Painlevé-Ince equation to a wider class of nonlinear second-order ordinary differential equations invariant under the symmetries of time translation and self-similarity. In the process we demonstrate a remarkable connection with the parameters obtained in the singularity analysis of this class of equations.  相似文献   

5.
The complete symmetry group of an 1+1 evolution equation of maximal symmetry has been demonstrated to be represented by the six-dimensional Lie algebra of point symmetries sl(2,R)sW, where W is the three-dimensional Heisenberg-Weyl algebra. We construct a complete symmetry group of a 1+2 evolution equation ut=(Fy(u)ux) for some functions F using the point symmetries admitted by the equation. The 1+2 equation is not completely specifiable by point symmetries alone for some specific functions F. We make use of Ansätze already reported by Myeni and Leach [S.M. Myeni, P.G.L. Leach, Nonlocal symmetries and complete symmetry groups of evolution equations, J. Nonlinear Math. Phys. 13 (2006) 377-392] which provide a route to the determination of the required generic nonlocal symmetries necessary to supplement the point symmetries for the complete specification of these 1+2 evolution equations. Further we find that taking some suitable linear combination of Lie point symmetries helps to optimise the procedure of specifying the equation. A general result concerning the number of symmetries required to form a complete symmetry group of evolution is presented in the Conclusion.  相似文献   

6.
A new method for finding contact symmetries is proposed for both ordinary and partial differential equations. Symmetries more general than Lie point are often difficult to find owing to an increased dependency of the infinitesimal functions on differential quantities. As a consequence, the invariant surface condition is often unable to be “split” into a reasonably sized set of determining equations, if at all. The problem of solving such a system of determining equations is here reduced to the problem of finding its own point symmetries and thus subsequent similarity solutions to these equations. These solutions will (in general) correspond to some subset of symmetries of the original differential equations. For this reason, we have termed such symmetries associate symmetries. We use this novel method of associate symmetries to determine new contact symmetries for a non-linear PDE and a second order ODE which could not previously be found using computer algebra packages; such symmetries for the latter are particularly difficult to find. We also consider a differential equation with known contact symmetries in order to illustrate that the associate symmetry procedure may, in some cases, be able to retrieve all such symmetries.  相似文献   

7.
It is shown how one can transform scalar first-order ordinarydifferential equations which admit non-local symmetries of theexponential type to integrable equations admitting canonicalexponential non-local symmetries. As examples we invoke theAbel equation of the second kind, the Riccati equation and naturalgeneralizations of these. Moreover, our method describes howa double reduction of order for a second-order ordinary differentialequation which admits a two-dimensional Lie algebra of generatorsof point symmetries can be affected if the second-order equationis first reduced in order once by a symmetry which does notspan an ideal of the two-dimensional Lie algebra.  相似文献   

8.
A scalar complex ordinary differential equation can be considered as two coupled real partial differential equations, along with the constraint of the Cauchy–Riemann equations, which constitute a system of four equations for two unknown real functions of two real variables. It is shown that the resulting system possesses those real Lie symmetries that are obtained by splitting each complex Lie symmetry of the given complex ordinary differential equation. Further, if we restrict the complex function to be of a single real variable, then the complex ordinary differential equation yields a coupled system of two ordinary differential equations and their invariance can be obtained in a non-trivial way from the invariance of the restricted complex differential equation. Also, the use of a complex Lie symmetry reduces the order of the complex ordinary differential equation (restricted complex ordinary differential equation) by one, which in turn yields a reduction in the order by one of the system of partial differential equations (system of ordinary differential equations). In this paper, for simplicity, we investigate the case of scalar second-order ordinary differential equations. As a consequence, we obtain an extension of the Lie table for second-order equations with two symmetries.  相似文献   

9.
The Cartan equivalence method is used to find out if a given equation has a nontrivial Lie group of point symmetries. In particular, we compute invariants that permit one to recognize equations with a three-dimensional symmetry group. An effective method to transform the Lie system (the system of partial differential equations to be satisfied by the infinitesimal point symmetries) into a formally integrable form is given. For equations with a three-dimensional symmetry group, the formally integrable form of the Lie system is found explicitly. Translated fromMatematicheskie Zametki, Vol. 60, No. 1, pp. 75–91, July, 1996.  相似文献   

10.
In Phys. D 78 (1994) 124, we have found that iterations of the nonclassical symmetries method give rise to new nonlinear equations, which inherit the Lie point symmetry algebra of the given equation. In the present paper, we show that special solutions of the right-order heir-equation correspond to classical and nonclassical symmetries of the original equations. An infinite number of nonlinear equations which possess nonclassical symmetries are derived.  相似文献   

11.
We study the geometry of differential equations determined uniquely by their point symmetries, that we call Lie remarkable. We determine necessary and sufficient conditions for a differential equation to be Lie remarkable. Furthermore, we see how, in some cases, Lie remarkability is related to the existence of invariant solutions. We apply our results to minimal submanifold equations and to Monge-Ampère equations in two independent variables of various orders.  相似文献   

12.
It is shown how to derive master symmetries for nonlinear lattice equations systematically using the basic principles but without using either their zero curvature equations or the bi-Hamiltonian structure. This has been illustrated for Volterra equation, two coupled Belov–Chaltikian (BC), and three coupled Blaszak–Marciniak (BM) lattice equations. The existence of a sequence of master symmetries is one of the characteristics of completely integrable nonlinear partial differential and differential–difference equations admitting Hamiltonian structure.  相似文献   

13.
In this work, we consider the Lie point symmetry analysis of a strongly nonlinear partial differential equation of third order, the ∞‐Polylaplacian, in two spatial dimensions. This equation is a higher order generalization of the ∞‐Laplacian, also known as Aronsson's equation, and arises as the analog of the Euler–Lagrange equations of a second‐order variational principle in L. We obtain its full symmetry group, one‐dimensional Lie subalgebras and the corresponding symmetry reductions to ordinary differential equations. Finally, we use the Lie symmetries to construct new invariant ∞‐Polyharmonic functions.  相似文献   

14.
Hidden symmetries of ordinary differential equations (ODEs)are studied with nonlocal group generators. General forms aregiven for an exponential nonlocal group generator of an ODEthat is reduced from a higher-order ODE, which is expressedin canonical variables and which is invariant under a two-parameterLie group. The nonlocal group generator identifies a type Ihidden symmetry. Type II hidden symmetries are found in somereduction pathways of an ODE invariant under a solvable, nonabelian,three-parameter Lie group. The algorithm for the appearanceof the type II hidden symmetry is stated. General forms forthe reduced nonlocal group generator, which identifies the typeII hidden symmetry, are presented when the other two commutingoriginal group generators are in normal form.  相似文献   

15.
We show how one can construct approximate conservation laws of approximate Euler-type equations via approximate Noether-type symmetry operators associated with partial Lagrangians. The ideas of the procedure for a system of unperturbed partial differential equations are extended to a system of perturbed or approximate partial differential equations. These approximate Noether-type symmetry operators do not form a Lie algebra in general. The theory is applied to the perturbed linear and nonlinear (1+1) wave equations and the Maxwellian tails equation. We have also obtained new approximate conservation laws for these equations.  相似文献   

16.
The unsteady incompressible laminar flow in a semi-infinite porous circular pipe with injection or suction through the pipe wall whose radius varies with time is considered. The present analysis simulates the flow field by the burning of inner surface of cylindrical grain in a solid rocket motor, in which the burning surface regresses with time. We apply Lie-group method for determining symmetry reductions of partial differential equations. Lie-group method starts out with a general infinitesimal group of transformations under which given partial differential equations are invariant, then, the determining equations are derived [Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, Wiley, New York, 1999; Hydon, Symmetry Methods for Differential Equations, Cambridge University Press, Cambridge, 2000; Olver, Applications of Lie Groups to Differential Equations, Springer, New York, 1986; Seshadri, Na, Group invariance in engineering boundary value problems, Springer, New York, 1985; Yi, Fengxiang, Lie symmetries of mechanical systems with unilateral holonomic constraints, Chinese Sci. Bull. 45 (2000) 1354–1358; Moritz, Schwalm, Uherka, Finding Lie groups that reduce the order of discrete dynamical systems, J. Phys. A: Math. 31 (1998) 7379–7402; Nucci, Clarkson, The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh–Nagumo equation, Phys. Lett. A 164 (1992) 49–56; Basarab, Lahno, Group classification of nonlinear partial differential equations: a new approach to resolving the problem, Proceedings of Institute of Mathematics of NAS of Ukraine, vol. 43, 2002, pp. 86–92; Burde, Expanded Lie group transformations and similarity reductions of differential equations, Proceedings of Institute of Mathematics of NAS of Ukraine, vol. 43, 2002, pp. 93–101; Gandarias, Bruzon, Classical and nonclassical symmetries of a generalized Boussinesq equation, J. Nonlinear Math. Phys. 5 (1998) 8–12; Hill, Solution of Differential Equations by Means of One-Parameter Groups, Pitman Publishing Co., 1982]. The determining equations are a set of linear differential equations, the solution of which gives the transformation function or the infinitesimals of the dependent and independent variables. After the group has been determined, a solution to the given partial differential equation may be found from the invariant surface condition such that its solution leads to similarity variables that reduce the number of independent variables in the system. Effect of the cross-flow Reynolds number Re and the dimensionless wall expansion ratio α on velocity, flow streamlines, axial and radial pressure drop, and wall shear stress has been studied both analytically and numerically and the results are plotted.  相似文献   

17.
Hidden symmetries of second-order differential equations whichare invariant under a one-parameter Lie point group and areof the energy-conserving form are analysed as an inverse problemfor some particular cases. These hidden symmetries occur asadditional one-parameter lie point group symmetries in the reducedfirst-order differential equations.  相似文献   

18.
In this work, we study a Boussinesq equation with a strong damping term from the point of view of the Lie theory. We derive the classical Lie symmetries admitted by the equation as well as the reduced ordinary differential equations. Some nontrivial conservation laws are derived by using the multipliers method. Taking into account the relationship between symmetries and conservation laws and applying the double reduction method, we obtain a direct reduction of order of the ordinary differential equations and in particular a kink solution.  相似文献   

19.
A systematic method to derive the nonlocal symmetries for partial differential and differential-difference equations with two independent variables is presented and shown that the Korteweg-de Vries (KdV) and Burger's equations, Volterra and relativistic Toda (RT) lattice equations admit a sequence of nonlocal symmetries. An algorithm, exploiting the obtained nonlocal symmetries, is proposed to derive recursion operators involving nonlocal variables and illustrated it for the KdV and Burger's equations, Volterra and RT lattice equations and shown that the former three equations admit factorisable recursion operators while the RT lattice equation possesses (2×2) matrix factorisable recursion operator. The existence of nonlocal symmetries and the corresponding recursion operator of partial differential and differential-difference equations does not always determine their mathematical structures, for example, bi-Hamiltonian representation.  相似文献   

20.
Nonlinear boundary value problems (BVPs) by means of the classical Lie symmetry method are studied. A new definition of Lie invariance for BVPs is proposed by the generalization of existing those on much wider class of BVPs. A class of two-dimensional nonlinear boundary value problems, modeling the process of melting and evaporation of metals, is studied in details. Using the definition proposed, all possible Lie symmetries and the relevant reductions (with physical meaning) to BVPs for ordinary differential equations are constructed. An example how to construct exact solution of the problem with correctly-specified coefficients is presented and compared with the results of numerical simulations published earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号