首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 279 毫秒
1.
本文主要研究如下含非线性梯度项的非强制拟线性椭圆方程\begin{equation*}\left \{\begin{array}{rl}-\text{div}(\frac{|\nabla u|^{p-2}\nabla u}{(1+|u|)^{\theta(p-1)}})+\frac{|u|^{p-2}u|\nabla u|^{p}}{(1+|u|)^{\theta p}}=\mu,~&x\in\Omega,\\ u=0,~&x\in\partial\Omega,\end{array}\right.\end{equation*} 弱解的存在性和不存在性, 其中$\Omega\subseteq\mathbb{R}^N(N\geq3)$ 是有界光滑区域, $1相似文献   

2.
我们考虑了一类原型为$$\begin{cases}u_t-\Delta u=\overrightarrow{b}(x,t)\cdot\nabla u+\gamma|\nabla u|^2-\text{div}{\overrightarrow{F}(x,t)}+f(x,t), &(x,t)\in \Omega_T,\\ u(x,t)=0,&(x,t)\in\Gamma_T,\\ u(x,0)=u_0(x), &x\in\Omega,\end{cases}$$的一类抛物方程. 其中, 函数$|\overrightarrow{b}(x,t)|^2,|\overrightarrow{F}(x,t)|^2,f(x,t)$位于空间$L^r{(0,T;L^q(\Omega))}$, $\gamma$是一个正常数. 在源项和梯度的系数项在空间$L^r{(0,T;L^q(\Omega))}$具有合适的可积条件下, 本文的目的在于证明先验的$L^\infty$估计以及方程存在有界解. 主要的方法包括通过正则化建立扰动问题, 用非线性的检验函数实现Stampacchia迭代技术以及极限过程中的紧性论断.  相似文献   

3.
一类带Hardy项的椭圆方程的无穷多解   总被引:1,自引:0,他引:1       下载免费PDF全文
唐仲伟 《中国科学A辑》2008,38(4):418-428
假设 $\Omega=B_R:=\{x\in \mathbb{R}^N:|x|0$, $ N \geq 7$, $ 2^*=\frac{2N}{N-2}$, 我们得到了如下半线性问题无穷多解的存在性: $\left\{ \begin{array}{ll} -\Delta u=\frac{\mu}{|x|^2}u+|u|^{2^*-2}u+\la u, &; x\in\Omega, \\ u=0, &; x\in \partial\Omega. \end{array} \right.$ 其中$\lambda \in \mathbb{R}, \mu \in \mathbb{R}$. 这些解由不同的节点来区分.  相似文献   

4.
该文研究了如下的奇异椭圆方程Neumann问题$\left\{\begin{array}{ll}\disp -\Delta u-\frac{\mu u}{|x|^2}=\frac{|u|^{2^{*}(s)-2}u}{|x|^s}+\lambda|u|^{q-2}u,\ \ &;x\in\Omega,\\D_\gamma{u}+\alpha(x)u=0,&;x\in\partial\Omega\backslash\{0\},\end{array}\right.$其中$\Omega $ 是 $ R^N$ 中具有 $ C^1$边界的有界区域, $ 0\in\partial\Omega$, $N\ge5$. $2^{*}(s)=\frac{2(N-s)}{N-2}$ (该文研究了如下的奇异椭圆方程Neumann问题$\left\{\begin{array}{ll}\disp -\Delta u-\frac{\mu u}{|x|^2}=\frac{|u|^{2^{*}(s)-2}u}{|x|^s}+\lambda|u|^{q-2}u,\ \ &;x\in\Omega,\\D_\gamma{u}+\alpha(x)u=0,&;x\in\partial\Omega\backslash\{0\},\end{array}\right.$其中$\Omega $ 是 $ R^N$ 中具有 $ C^1$边界的有界区域, $ 0\in\partial\Omega$, $N\ge5$. $2^{*}(s)=\frac{2(N-s)}{N-2}$ (该文研究了如下的奇异椭圆方程Neumann问题其中Ω是RN中具有C1边界的有界区域,0∈■Ω,N≥5.2*(s)=2(N-s)/N-2(0≤s≤2)是临界Sobolev-Hardy指标, 10.利用变分方法和对偶喷泉定理,证明了这个方程无穷多解的存在性.  相似文献   

5.
本文在无边界流的光滑有界区域$\Omega\subset\mathbb{R}^n~(n>2)$上研究了具有奇异灵敏度及logistic源的抛物-椭圆趋化系统$$\left\{\begin{array}{ll}u_t=\Delta u-\chi\nabla\cdot(\frac{u}{v}\nabla v)+r u-\mu u^k,&x\in\Omega,\,t>0,\\ 0=\Delta v-v+u,&x\in\Omega,\,t>0\end{array}\right.$$ 其中$\chi$, $r$, $\mu>0$, $k\geq2$. 证明了若当$r$适当大, 则当$t\rightarrow\infty$时该趋化系统全局有界解呈指数收敛于$((\frac{r}{\mu})^{\frac{1}{k-1}}, (\frac{r}{\mu})^{\frac{1}{k-1}})$.  相似文献   

6.
7.
In this paper we discuss the initial-boundary value problems for qnasilinear gymmetrio hyperbolic system and their applications. It is proved that Theorem 1, Suppose \(\Omega \) is a bomded domain, its boundary \(\partial \Omega \) is sufficient smooth. We consider the quasilinear symmetric hyperbolic system \[\sum\limits_{i = 0}^n {{a^i}(x,u)\frac{{\partial u}}{{\partial {x_i}}}} = f(x,u)\] in the domain \([0,h] \times \Omega \). The initial-boimda/ry conditions \[\begin{array}{l} {\left. u \right|_{{x_0} = 0}} = 0\{\left. {Mu} \right|_{\partial \Omega }} = 0 \end{array}\] are given. If \({a^0}\) is positive definite,\(\partial \Omega \) is noncharaGieristic, \(Mu = 0\) is stable admissible and all coefficients are smooth enough, some of derivatives of \(f(x,0)\) at \({{x_0} = 0}\) vanish., then the smooth solution of (1), (2) uniquely exists, if h is sufficiently small. Theorem 2. We consider the semi-Unear symmetric hyperbolic system \[\sum\limits_{i = 0}^n {{a^i}(x,u)\frac{{\partial u}}{{\partial {x_i}}}} = f(x,u)\] The initial-boundary conditions are still \[\begin{array}{l} {\left. u \right|_{{x_0} = 0}} = 0\{\left. {Mu} \right|_{\partial \Omega }} = 0 \end{array}\] If the bowndary \(\partial \Omega \) is a regular characteristic, \(Mu = 0\) is normally admissible and other conditions is the same as that in the theorem 1., then the smooth solution of (3), (4) still wriiquely exists if hM sufficiently small.  相似文献   

8.
In this paper we discuss the initial-boundary value problems for quasilinear symmetric hyperbolic system with characteristic boundary.Suppose \Omega is a bounded domain,its boundary \partial \Omega is sufficiently smooth.We consider the quasilinear symmetric hyperbolic system $[\sum\limits_{i = 0}^n {{\alpha _i}(x,u)\frac{{\partial u}}{{\partial {x_i}}}} = f(x,u)\]$ in the domain [0, h]*\Omega. The initial-boundary conditions are $u|_x_0=0$(2) $Mu|_[0,h]*\partial \Omega=0$(3) (No loss of generality, the initial condition may be considered as homogeneous one) . We assume the coefficients of (1), (3) are sufficiently smooth, the compatibility condition and the following conditions are satisfied. 1) when t = 0, u=0, the $\alpha_0(x,u)$ is a positive definite matrix. 2) If [\tilde u\] denotes any vector function satisfying the condition (3), the boundary [0,h]*\partial \Omega is non-characteristic or regular oliarabterigitic for the operator $[\sum\limits_{i = 0}^n {{\alpha _i}(x,\tilde u) \times \frac{\partial }{{\partial {x_i}}}} \]$. and if $v(0,v_1,\cdots,v_n)$ denotes the normal direction to the boundary, the matrix $\beta(x,\tilde u\)=\sum\limits_{i=0}^n v_i \alpha_i(x,\tilde u\)$ is equal to \beta_0, which only depends on x, and Mu=0 is a maximum non-negatiye subspace of quahratio form u\beta_0u. 3) There exists a non-singular matrix Q (x), such that the matrix $\tilde =beta(x,v)=Q'(x)\beta(x,Q^-1v)Q(x)$ may be reduced to a block diagonal matrix $[\left( {\begin{array}{*{20}{c}} {{B_1}}&0\0&{{B_2}} \end{array}} \right)\]$ and the boundary condition may be reduced to $v_1=\cdots=v_L=0$(4) when (t,x) lies on the boundary [0,h] \times \partial \Omega, and v satisfies (4),the block B_1 will be equal to a non-singular matrix B_10 and B_2 will vanish. Under these assumptions, we have proved: Theorem I. There exists a sufficiently small number \delta, such that if h \leq \delta, the local smooth solution of the initial-boundary value problem (1)—(3) uniquely exists. This theorem has been applied to gas dynamics. For both steady flow and unsteady flow in three dimentional space we can use Theorem I to obtain the result of the unique existance of local smooth solution for the correponding system of equations, if there isn;t any shook wave.  相似文献   

9.
设$L$为$L^2({{\mathbb R}^n})$上的线性算子且$L$生成的解析半群 $\{e^{-tL}\}_{t\ge 0}$的核满足Poisson型上界估计, 其衰减性由$\theta(L)\in(0,\infty)$刻画. 又设$\omega$为定义在$(0,\infty)$上的$1$-\!上型及临界 $\widetilde p_0(\omega)$-\!下型函数, 其中 $\widetilde p_0(\omega)\in (n/(n+\theta(L)), 1]$. 并记 $\rho(t)={t^{-1}}/\omega^{-1}(t^{-1})$, 其中$t\in (0,\infty).$ 本文引入了一类 Orlicz-Hardy空间 $H_{\omega,\,L}({\mathbb R}^n)$及 $\mathrm{BMO}$-\!型空间${\mathrm{BMO}_{\rho,\,L} ({\mathbb R}^n)}$, 并建立了关于${\mathrm{BMO}_{\rho,\,L}({\mathbb R}^n)}$函数的John-Nirenberg不等式及 $H_{\omega,\,L}({\mathbb R}^n)$与 $\mathrm{BMO}_{\rho,\,L^\ast}({\mathbb R}^n)$的对偶关系, 其中 $L^\ast$为$L$在$L^2({\mathbb R}^n)$中的共轭算子. 利用该对偶关系, 本文进一步获得了$\mathrm{BMO}_{\rho,\,L^\ast}(\rn)$的$\ro$-\!Carleson 测度特征及 $H_{\omega,\,L}({\mathbb R}^n)$的分子特征, 并通过后者建立了广义分数次积分算子 $L^{-\gamma}_\rho$从$H_{\omega,\,L}({\mathbb R}^n)$到 $H_L^1({\mathbb R}^n)$或$L^q({\mathbb R}^n)$的有界性, 其中$q>1$, $H_L^1({\mathbb R}^n)$为Auscher, Duong 和 McIntosh引入的Hardy空间. 如取$\omega(t)=t^p$,其中$t\in(0,\infty)$及$p\in(n/(n+\theta(L)), 1]$, 则所得结果推广了已有的结果.  相似文献   

10.
The purpose of this paper is to study the existence of the classical solutions of some Dirichlet problems for quasilinear elliptic equations $$\[{a_{11}}(x,y,u)\frac{{{\partial ^2}u}}{{\partial {x^2}}} + 2{a_{12}}(x,y,u)\frac{{{\partial ^2}u}}{{\partial x\partial y}} + {a_{22}}(x,y,u)\frac{{{\partial ^2}u}}{{\partial {y^2}}} + f(x,y,u,\frac{{\partial u}}{{\partial x}},\frac{{\partial u}}{{\partial y}}) = 0\]$$ Where $\[{a_{ij}}(x,y,u)(i,j = 1,2)\]$ satisfy $$\[\lambda (x,y,u){\left| \xi \right|^2} \le \sum\limits_{i,j = 1}^2 {{a_{ij}}(x,y,u)} {\xi _i}{\xi _j} \le \Lambda (x,y,u){\left| \xi \right|^2}\]$$ for all $\[\xi \in {R^2}\]$ and $\[(x,y,u) \in \bar \Omega \times [0, + \infty ),i.e.\lambda (x,y,u),\Lambda (x,y,u)\]$ denote the minimum and maximum eigenvalues of the matrix $\[[{a_{ij}}(x,y,u)]\]$ respectively, moreover $$\[\lambda (x,y,0) = 0,\Lambda (x,u,0) = 0;\Lambda (x,y,u) \ge \lambda (x,y,u) > 0,(u > 0).\]$$ Some existence theorems under tire “ natural conditions imposed on $\[f(x,y,u,p,q)\]$ are obtained.  相似文献   

11.
In this work, we give an existence result of entropy solutions for nonlinear anisotropic elliptic equation of the type $$- \mbox{div} \big( a(x,u,\nabla u)\big)+ g(x,u,\nabla u) + |u|^{p_{0}(x)-2}u = f-\mbox{div} \phi(u),\quad \mbox{ in } \Omega,$$ where $-\mbox{div}\big(a(x,u,\nabla u)\big)$ is a Leray-Lions operator, $\phi \in C^{0}(I\!\!R,I\!\!R^{N})$. The function $g(x,u,\nabla u)$ is a nonlinear lower order term with natural growth with respect to $|\nabla u|$, satisfying the sign condition and the datum $f$ belongs to $L^1(\Omega)$.  相似文献   

12.
We study existence of positive weak solution for a class of $p$-Laplacian problem $$\left\{\begin{array}{ll}-\Delta_{p}u = \lambda g(x)[f(u)-\frac{1}{u^{\alpha}}], & x\in \Omega,\\u= 0 , & x\in\partial \Omega,\end{array\right.$$ where $\lambda$ is a positive parameter and $\alpha\in(0,1),$ $\Omega $ is a bounded domain in $ R^{N}$ for $(N > 1)$ with smooth boundary, $\Delta_{p}u = div (|\nabla u|^{p-2}\nabla u)$ is the p-Laplacian operator for $( p > 2),$ $g(x)$ is $C^{1}$ sign-changing function such that maybe negative near the boundary and be positive in the interior and $f$ is $C^{1}$ nondecreasing function $\lim_{s\to\infty}\frac{f(s)}{s^{p-1}}=0.$ We discuss the existence of positive weak solution when $f$ and $g$ satisfy certain additional conditions. We use the method of sub-supersolution to establish our result.  相似文献   

13.
Using variational methods, we study the existence of weak solutions forthe degenerate quasilinear elliptic system$$\left\{\begin{array}{ll}- \mathrm{div}\Big(h_1(x)|\nabla u|^{p-2}\nabla u\Big) = F_{u}(x,u,v) &\text{ in } \Omega,\\-\mathrm{div}\Big(h_2(x)|\nabla v|^{q-2}\nabla v\Big) = F_{v}(x,u,v) &\text{ in } \Omega,\\u=v=0 & \textrm{ on } \partial\Omega,\end{array}\right.$$where $\Omega\subset \mathbb R^N$ is a smooth bounded domain, $\nabla F= (F_u,F_v)$ stands for the gradient of $C^1$-function $F:\Omega\times\mathbb R^2 \to \mathbb R$, the weights $h_i$, $i=1,2$ are allowed to vanish somewhere,the primitive $F(x,u,v)$ is intimately related to the first eigenvalue of acorresponding quasilinear system.  相似文献   

14.
The present article is concerned with the following nonlocal elliptic equation involving concave and convex terms,
$$\begin{array}{ll}- M \left(\int_\Omega \frac{1}{p(x)}|\nabla u|^{p(x)}{\rm d}x\right)\Big(\Delta_{p(x)}u\Big) \!&=\! \lambda \big(g(x)|u|^{q(x)-2}u\!-\!h(x)\\ &\quad |u|^{r(x)-2}u\big), \quad x\in \Omega,\\ & u = 0,\quad x\in \partial\Omega. \end{array}$$
By means of the variational approach, we prove that the above problem admits a sequence of infinitely many solutions under suitable assumptions.
  相似文献   

15.
The aim of this study is to investigate the existence of infinitely many weak solutions for the $(p(x), q(x))$-Kirchhoff Neumann problem described by the following equation : \begin{equation*} \left\{\begin{array}{ll} -\left(a_{1}+a_{2}\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx\right)\Delta_{p(\cdot)}u-\left(b_{1}+b_{2}\int_{\Omega}\frac{1}{q(x)}|\nabla u|^{q(x)}dx\right)\Delta_{q(\cdot)}u\+\lambda(x)\Big(|u|^{p(x)-2} u+|u|^{q(x)-2} u\Big)= f_1(x,u)+f_2(x,u) &\mbox{ in } \Omega, \\frac{\partial u}{\partial \nu} =0 \quad &\mbox{on} \quad \partial\Omega.\end{array}\right. \end{equation*} By employing a critical point theorem proposed by B. Ricceri, which stems from a more comprehensive variational principle, we have successfully established the existence of infinitely many weak solutions for the aforementioned problem.  相似文献   

16.
We prove the existence of positive solutions for the system$$\begin{align*}\begin{cases}-\Delta_{p} u =\lambda a(x){f(v)}{u^{-\alpha}},\qquad x\in \Omega,\\-\Delta_{q} v = \lambda b(x){g(u)}{v^{-\beta}},\qquad x\in \Omega,\\u = v =0, \qquad x\in\partial \Omega,\end{cases}\end{align*}$$where $\Delta_{r}z={\rm div}(|\nabla z|^{r-2}\nabla z)$, for $r>1$ denotes the r-Laplacian operator and $\lambda$ is a positive parameter, $\Omega$ is a bounded domain in $\mathbb{R}^{n}$, $n\geq1$ with sufficiently smooth boundary and $\alpha, \beta \in (0,1).$ Here $ a(x)$ and $ b(x)$ are $C^{1}$ sign-changingfunctions that maybe negative near the boundary and $f,g $ are $C^{1}$ nondecreasing functions, such that $f, g :\ [0,\infty)\to [0,\infty);$ $f(s)>0,$ $g(s)>0$ for $s> 0$, $\lim_{s\to\infty}g(s)=\infty$ and$$\lim_{s\to\infty}\frac{f(Mg(s)^{\frac{1}{q-1}})}{s^{p-1+\alpha}}=0,\qquad \forall M>0.$$We discuss the existence of positive weak solutions when $f$, $g$, $a(x)$ and $b(x)$ satisfy certain additional conditions. We employ the method of sub-supersolution to obtain our results.  相似文献   

17.
In this paper,we are interested in the existence of positive solutions for the Kirchhoff type problems{-(a_1 + b_1M_1(∫_?|▽u|~pdx))△_(_pu) = λf(u,v),in ?,-(a_2 + b_2M_2(∫?|▽v|~qdx))△_(_qv) = λg(u,v),in ?,u = v = 0,on ??,where 1 p,q N,M i:R_0~+→ R~+(i = 1,2) are continuous and increasing functions.λ is a parameter,f,g ∈ C~1((0,∞) ×(0,∞)) × C([0,∞) × [0,∞)) are monotone functions such that f_s,f_t,g_s,g_t ≥ 0,and f(0,0) 0,g(0,0) 0(semipositone).Our proof is based on the sub-and super-solutions techniques.  相似文献   

18.
This paper deals with existence and regularity results for the problem $ \cases{u_t-\mathrm{div}(a(x,t,u )\nabla u)=-\mathrm{div}(u\,E) \qquad in \Omega\times (0,T),\cr u=0 \qquad on \partial \Omega\times (0,T), \cr u (0)= u_0 \qquad in \Omega ,\cr} $ under various assumptions on E and $ u_0 $. The main difculty in studying this problem is due to the presence of the term div(uE), which makes the differential operator non coercive on the "energy space" $ L^2 (0, T; H_0^1 (\Omega)) $.AMS Subject Classification: 35K10, 35K15, 35K65.  相似文献   

19.
We discuss the existence and uniqueness of the weak solution of the following quasilinear parabolic equation
$$\left\{\begin{array}{ll}u_t-\Delta _{p(x)}u = f(x,u)&\quad \text{in }\quad Q_T \stackrel{{\rm{def}}}{=} (0,T)\times\Omega,\\u = 0 & \quad\text{on}\quad \Sigma_T\stackrel{{\rm{def}}}{=} (0,T)\times\partial\Omega,\\u(0,x)=u_0(x)& \quad \text{in}\quad \Omega \end{array}\right.\quad\quad (P_{T})$$
involving the p(x)-laplacian operator. Next, we discuss the global behaviour of solutions and in particular some stabilization properties.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号