首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
应用Gteen函数将分数阶微分方程边值问题可转化为等价的积分方程.近来此方法被应用于讨论非线性分数阶微分方程边值问题解的存在性.讨论非线性分数阶微分方程边值问题,应用Green函数,将其转化为等价的积分方程,并设非线性项满足Caratheodory条件,利用非紧性测度的性质和M6nch’s不动点定理证明解的存在性.  相似文献   

2.
In this paper, an efficient and accurate computational method based on the Chebyshev wavelets (CWs) together with spectral Galerkin method is proposed for solving a class of nonlinear multi-order fractional differential equations (NMFDEs). To do this, a new operational matrix of fractional order integration in the Riemann–Liouville sense for the CWs is derived. Hat functions (HFs) and the collocation method are employed to derive a general procedure for forming this matrix. By using the CWs and their operational matrix of fractional order integration and Galerkin method, the problems under consideration are transformed into corresponding nonlinear systems of algebraic equations, which can be simply solved. Moreover, a new technique for computing nonlinear terms in such problems is presented. Convergence of the CWs expansion in one dimension is investigated. Furthermore, the efficiency and accuracy of the proposed method are shown on some concrete examples. The obtained results reveal that the proposed method is very accurate and efficient. As a useful application, the proposed method is applied to obtain an approximate solution for the fractional order Van der Pol oscillator (VPO) equation.  相似文献   

3.
In this paper, we consider the properties of Green’s function for a class of nonlinear Caputo fractional differential equations with integral boundary conditions by constructing an available integral operator. By means of well-known fixed point theorems and lower and upper solutions method, some new existence and nonexistence criteria of single or multiple positive solutions for fractional differential equation boundary value problems are established. As applications, some interesting examples are presented to illustrate the main results.  相似文献   

4.
An iterative method for solving nonlinear functional equations, viz. nonlinear Volterra integral equations, algebraic equations and systems of ordinary differential equation, nonlinear algebraic equations and fractional differential equations has been discussed.  相似文献   

5.
In this article, our main goal is to render an idea to convert a nonlinear weakly singular Volterra integral equation to a non‐singular one by new fractional‐order Legendre functions. The fractional‐order Legendre functions are generated by change of variable on well‐known shifted Legendre polynomials. We consider a general form of singular Volterra integral equation of the second kind. Then the fractional Legendre–Gauss–Lobatto quadratures formula eliminates the singularity of the kernel of the integral equation. Finally, the Legendre pseudospectral method reduces the solution of this problem to the solution of a system of algebraic equations. This method also can be utilized on fractional differential equations as well. The comparison of results of the presented method and other numerical solutions shows the efficiency and accuracy of this method. Also, the obtained maximum error between the results and exact solutions shows that using the present method leads to accurate results and fast convergence for solving nonlinear weakly singular Volterra integral equations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
韩仁基  蒋威 《数学研究》2011,44(2):128-138
讨论了一类非线性分数阶微分方程三点边值问题解的存在性.微分算子是Riemann-Liouville导算子并且非线性项依赖于低阶分数阶导数.通过将所考虑的问题转化为等价的Fredholm型积分方程,利用Schauder不动点定理获得该三点边值问题至少存在一个解.  相似文献   

7.
The pseudo‐spectral Legendre–Galerkin method (PS‐LGM) is applied to solve a nonlinear partial integro‐differential equation arising in population dynamics. This equation is a competition model in which similar individuals are competing for the same resources. It is a kind of reaction–diffusion equation with integral term corresponding to nonlocal consumption of resources. The proposed method is based on the Legendre–Galerkin formulation for the linear terms and interpolation operator at the Chebyshev–Gauss–Lobatto (CGL) points for the nonlinear terms. Also, the integral term, which is a kind of convolution, is directly computed by a fast and accurate method based on CGL interpolation operator, and thus, the use of any quadrature formula in its computation is avoided. The main difference of the PS‐LGM presented in the current paper with the classic LGM is in treating the nonlinear terms and imposing boundary conditions. Indeed, in the PS‐LGM, the nonlinear terms are efficiently handled using the CGL points, and also the boundary conditions are imposed strongly as collocation methods. Combination of the PS‐LGM with a semi‐implicit time integration method such as second‐order backward differentiation formula and Adams‐Bashforth method leads to reducing the complexity of computations and obtaining a linear algebraic system of equations with banded coefficient matrix. The desired equation is considered on one and two‐dimensional spatial domains. Efficiency, accuracy, and convergence of the proposed method are demonstrated numerically in both cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we derive the equivalent fractional integral equation to the nonlinear implicit fractional differential equations involving Ψ-Hilfer fractional derivative subject to nonlocal fractional integral boundary conditions. The existence of a solution, Ulam–Hyers, and Ulam–Hyers–Rassias stability have been acquired by means of an equivalent fractional integral equation. Our investigations depend on the fixed-point theorem due to Krasnoselskii and the Gronwall inequality involving Ψ-Riemann–Liouville fractional integral. Finally, examples are provided to show the utilization of primary outcomes.  相似文献   

9.
In this article, the sub‐equation method is presented for finding the exact solutions of a nonlinear fractional partial differential equations. For this, the fractional complex transformation method has been used to convert fractional‐order partial differential equation to ordinary differential equation. The fractional derivatives are described in Jumarie's the modified Riemann–Liouville sense. We apply to this method for the nonlinear time fractional differential equations. With the aid of symbolic computation, a variety of exact solutions for them are obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.

In this work, we study a class of nonlocal neutral fractional differential equations with deviated argument in the separable Hilbert space. We obtain an associated integral equation and then, consider a sequence of approximate integral equations. We investigate the existence and uniqueness of the mild solution for every approximate integral equation by virtue of the theory of analytic semigroup theory via the technique of Banach fixed point theorem. Next we demonstrate the convergence of the solutions of the approximate integral equations to the solution of the associated integral equation. The Faedo–Galerkin approximation of the solution is studied and demonstrated some convergence results. Finally, we give an example.

  相似文献   

11.
In the paper, we apply the generalized polynomial chaos expansion and spectral methods to the Burgers equation with a random perturbation on its left boundary condition. Firstly, the stochastic Galerkin method combined with the Legendre–Galerkin Chebyshev collocation scheme is adopted, which means that the original equation is transformed to the deterministic nonlinear equations by the stochastic Galerkin method and the Legendre–Galerkin Chebyshev collocation scheme is used to deal with the resulting nonlinear equations. Secondly, the stochastic Legendre–Galerkin Chebyshev collocation scheme is developed for solving the stochastic Burgers equation; that is, the stochastic Legendre–Galerkin method is used to discrete the random variable meanwhile the nonlinear term is interpolated through the Chebyshev–Gauss points. Then a set of deterministic linear equations can be obtained, which is in contrast to the other existing methods for the stochastic Burgers equation. The mean square convergence of the former method is analyzed. Numerical experiments are performed to show the effectiveness of our two methods. Both methods provide alternative approaches to deal with the stochastic differential equations with nonlinear terms.  相似文献   

12.
In this paper, post-buckling and nonlinear vibration analysis of geometrically imperfect beams made of functionally graded materials (FGMs) resting on nonlinear elastic foundation subjected to axial force are studied. The material properties of FGMs are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The assumptions of a small strain and moderate deformation are used. Based on Euler–Bernoulli beam theory and von-Karman geometric nonlinearity, the integral partial differential equation of motion is derived. Then this partial differential equation (PDE) problem, which has quadratic and cubic nonlinearities, is simplified into an ordinary differential equation (ODE) problem by using the Galerkin method. Finally, the governing equation is solved analytically using the variational iteration method (VIM). Some new results for the nonlinear natural frequencies and buckling load of the imperfect functionally graded (FG) beams such as the effects of vibration amplitude, elastic coefficients of foundation, axial force, end supports and material inhomogeneity are presented for future references. Results show that the imperfection has a significant effect on the post-buckling and vibration response of FG beams.  相似文献   

13.
In this paper, we apply the Jacobi collocation method for solving nonlinear fractional differential equations with integral boundary conditions. Due to existence of integral boundary conditions, after reformulation of this equation in the integral form, the method is proposed for solving the obtained integral equation. Also, the convergence and stability analysis of the proposed method are studied in two main theorems. Furthermore, the optimum degree of convergence in the L2 norm is obtained for this method. Furthermore, some numerical examples are presented in order to illustrate the performance of the presented method. Finally, an application of the model in control theory is introduced. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
We discuss the solvability of integral equations associated with initial value problems for a nonlinear differential equation of fractional order. The differential operator is the Caputo fractional derivative and the inhomogeneous term depends on the fractional derivative of lower orders. We obtain the existence of at least one solution for integral equations using the Leray–Schauder Nonlinear Alternative for several types of initial value problems. In addition, using the Banach contraction principle, we establish sufficient conditions for unique solutions. Our approach in obtaining integral equations is the “reduction” of the fractional order of the integro-differential equations based on certain semigroup properties of the Caputo operator.  相似文献   

15.
In this paper we introduce higher order numerical methods for solving fractional differential equations. We use two approaches to this problem. The first approach is based on a direct discretisation of the fractional differential operator: we obtain a numerical method for solving a linear fractional differential equation with order 0<α<1. The order of convergence of the numerical method is O(h 3?α ). Our second approach is based on discretisation of the integral form of the fractional differential equation and we obtain a fractional Adams-type method for a nonlinear fractional differential equation of any order α>0. The order of convergence of the numerical method is O(h 3) for α≥1 and O(h 1+2α ) for 0<α≤1 for sufficiently smooth solutions. Numerical examples are given to show that the numerical results are consistent with the theoretical results.  相似文献   

16.
This paper is devoted to proving the existence and uniqueness of solutions to Cauchy type problems for fractional differential equations with composite fractional derivative operator on a finite interval of the real axis in spaces of summable functions. An approach based on the equivalence of the nonlinear Cauchy type problem to a nonlinear Volterra integral equation of the second kind and applying a variant of the Banach’s fixed point theorem to prove uniqueness and existence of the solution is presented. The Cauchy type problems for integro-differential equations of Volterra type with composite fractional derivative operator, which contain the generalized Mittag-Leffler function in the kernel, are considered. Using the method of successive approximation, and the Laplace transform method, explicit solutions of the open problem proposed by Srivastava and Tomovski (2009) [11] are established in terms of the multinomial Mittag-Leffler function.  相似文献   

17.
In the current paper, based on fractional complex transformation, the GG2-expansion method which is used to solve differential equations of integer order is developed for finding exact solutions of nonlinear fractional differential equations with Jumarie's modified Riemann-Liouville derivative. And then, time-fractional Burgers equation and space-fractional coupled Konopelchenko-Dubrovsky equations are provided to show that this method is effective in solving nonlinear fractional differential equations.  相似文献   

18.
We derive in this paper some new existence and uniqueness results for a nonlinear multi-orders impulsive differential equation subject to fractional multi-point fractional integral boundary conditions. The obtained results are based on the Banach’s contraction theorem as well as Schauder fixed point theorem. Finally, two illustrative examples are given.  相似文献   

19.
This paper aims to formulate the fractional quasi‐inverse scattering method. Also, we give a positive answer to the following question: can the Ablowitz‐Kaup‐Newell‐Segur (AKNS) method be applied to the space–time fractional nonlinear differential equations? Besides, we derive the Bäcklund transformations for the fractional systems under study. Also, we construct the fractional quasi‐conservation laws for the considered fractional equations from the defined fractional quasi AKNS‐like system. The nonlinear fractional differential equations to be studied are the space–time fractional versions of the Kortweg‐de Vries equation, modified Kortweg‐de Vries equation, the sine‐Gordon equation, the sinh‐Gordon equation, the Liouville equation, the cosh‐Gordon equation, the short pulse equation, and the nonlinear Schrödinger equation.  相似文献   

20.
The fractional derivatives in the sense of Caputo, and the homotopy perturbation method are used to construct approximate solutions for nonlinear Kolmogorov–Petrovskii–Piskunov (KPP) equations with respect to time and space fractional derivatives. Also, we apply complex transformation to convert a time and space fractional nonlinear KPP equation to an ordinary differential equation and use the homotopy perturbation method to calculate the approximate solution. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号