首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geometrical interpretation of a family of higher order iterative methods for solving nonlinear scalar equations was presented in [S. Amat, S. Busquier, J.M. Gutiérrez, Geometric constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 157(1) (2003) 197-205]. This family includes, as particular cases, some of the most famous third-order iterative methods: Chebyshev methods, Halley methods, super-Halley methods, C-methods and Newton-type two-step methods. The aim of the present paper is to analyze the convergence of this family for equations defined between two Banach spaces by using a technique developed in [J.A. Ezquerro, M.A. Hernández, Halley’s method for operators with unbounded second derivative. Appl. Numer. Math. 57(3) (2007) 354-360]. This technique allows us to obtain a general semilocal convergence result for these methods, where the usual conditions on the second derivative are relaxed. On the other hand, the main practical difficulty related to the classical third-order iterative methods is the evaluation of bilinear operators, typically second-order Fréchet derivatives. However, in some cases, the second derivative is easy to evaluate. A clear example is provided by the approximation of Hammerstein equations, where it is diagonal by blocks. We finish the paper by applying our methods to some nonlinear integral equations of this type.  相似文献   

2.
A new eighth-order iterative method for solving nonlinear equations   总被引:1,自引:0,他引:1  
In this paper we present an improvement of the fourth-order Newton-type method for solving a nonlinear equation. The new Newton-type method is shown to converge of the order eight. Per iteration the new method requires three evaluations of the function and one evaluation of its first derivative and therefore the new method has the efficiency index of , which is better than the well known Newton-type methods of lower order. We shall examine the effectiveness of the new eighth-order Newton-type method by approximating the simple root of a given nonlinear equation. Numerical comparisons are made with several other existing methods to show the performance of the presented method.  相似文献   

3.
This paper presents analytical-approximate solutions of the time-fractional Cahn-Hilliard (TFCH) equations of fourth and sixth order using the new iterative method (NIM) and q-homotopy analysis method (q-HAM). We obtained convergent series solutions using these two iterative methods. The simplicity and accuracy of these methods in solving strongly nonlinear fractional differential equations is displayed through the examples provided. In the case where exact solution exists, error estimates are also investigated.  相似文献   

4.
In this article we present three derivative free iterative methods with memory to solve nonlinear equations. With the process developed, we can obtain n-step derivative free iterative methods with memory of arbitrary high order. Numerical examples are provided to show that the new methods have an equal or superior performance, on smooth and nonsmooth equations, compared to classical iterative methods as Steffensen’s and Newton’s methods and other derivative free methods with and without memory with high order of convergence.  相似文献   

5.
In this paper, an efficient numerical method for solving the general fractional diffusion equations with Riesz fractional derivative is proposed by combining the fractional compact difference operator and the boundary value methods. In order to efficiently solve the generated linear large-scale system, the generalized minimal residual (GMRES) algorithm is applied. For accelerating the convergence rate of the iterative, the Strang-type, Chan-type and P-type preconditioners are introduced. The suggested method can reach higher order accuracy both in space and in time than the existing methods. When the used boundary value method is $A_{k1,k2}$-stable, it is proven that Strang-type preconditioner is invertible and the spectra of preconditioned matrix is clustered around 1. It implies that the iterative solution is convergent rapidly. Numerical experiments with the absorbing boundary condition and the generalized Dirichlet type further verify the efficiency.  相似文献   

6.
裕静静  江平  刘植 《计算数学》2017,39(2):151-166
本文首先根据Runge-Kutta方法的思想,结合Newton迭代法,提出了一类带参数的解非线性方程组F(x)=0的迭代算法,然后基于解非线性方程f(x)=0的King算法,给出第二类解非线性方程组的迭代算法,收敛性分析表明这两类算法都是五阶收敛的.其次给出了本文两类算法的效率指数,以及一些已知算法的效率指数,并且将本文算法的效率指数与其它方法进行详细的比较,通过效率比率R_(i,j)可知本文算法具有较高的计算效率.最后给出了四个数值实例,将本文两类算法与现有的几种算法进行比较,实验结果说明本文算法收敛速度快,迭代次数少,有明显的优势.  相似文献   

7.
In this study, we develop a four-parameter family of sixth order convergent iterative methods for solving nonlinear scalar equations. Methods of the family require evaluation of four functions per iteration. These methods are totally free of derivatives. Convergence analysis shows that the family is sixth order convergent, which is also verified through the numerical work. Though the methods are independent of derivatives, computational results demonstrate that family of methods are efficient and demonstrate equal or better performance as compared with other six order methods, and the classical Newton method.  相似文献   

8.
A class of modified regula falsi iterative formulae for solving nonlinear equations is presented in this paper. This method is shown to be quadratically convergent for the sequence of diameters and the sequence of iterative points. The numerical experiments show that new method is effective and comparable to well-known methods.  相似文献   

9.
In this paper, a higher-order method for the solution of a nonlinear scalar equation is presented. It is proved that the new method is locally convergent with an order of (m+2), where m is the highest order derivative used in the iterative formula. Some numerical examples are used to demonstrate the new method.  相似文献   

10.
We consider a semismooth reformulation of the KKT system arising from the semi-infinite programming (SIP) problem. Based upon this reformulation, we present a new smoothing Newton-type method for the solution of SIP problem. The main properties of this method are: (a) it is globally convergent at least to a stationary point of the SIP problem, (b) it is locally superlinearly convergent under a certain regularity condition, (c) the feasibility is ensured via the aggregated constraint, and (d) it has to solve just one linear system of equations at each iteration. Preliminary numerical results are reported.  相似文献   

11.
Using the forms of Newton iterative function, the iterative function of Newton's method to handle the problem of multiple roots and the Halley iterative function, we give a class of iterative formulae for solving equations in one variable in this paper and show that their convergence order is at least quadratic. At last we employ our methods to solve some non-linear equations and compare them with Newton's method and Halley's method. Numerical results show that our iteration schemes are convergent if we choose two suitable parametric functions λ(x) and μ(x). Therefore, our iteration schemes are feasible and effective.  相似文献   

12.
In the present paper,we study the restricted inexact Newton-type method for solving the generalized equation 0∈f(x)+F(x),where X and Y are Banach spaces,f:X→Y is a Frechet differentiable function and F:X■Y is a set-valued mapping with closed graph.We establish the convergence criteria of the restricted inexact Newton-type method,which guarantees the existence of any sequence generated by this method and show this generated sequence is convergent linearly and quadratically according to the particular assumptions on the Frechet derivative of f.Indeed,we obtain semilocal and local convergence results of restricted inexact Newton-type method for solving the above generalized equation when the Frechet derivative of f is continuous and Lipschitz continuous as well as f+F is metrically regular.An application of this method to variational inequality is given.In addition,a numerical experiment is given which illustrates the theoretical result.  相似文献   

13.
Typical solution methods for solving mixed complementarity problems either generatefeasible iterates but have to solve relatively complicated subproblems such as quadraticprograms or linear complementarity problems,or(those methods)have relatively simplesubproblems such as system of linear equations but possibly generate infeasible iterates.In this paper,we propose a new Newton-type method for solving monotone mixed com-plementarity problems,which ensures to generate feasible iterates,and only has to solve asystem of well-conditioned linear equations with reduced dimension per iteration.Withoutany regularity assumption,we prove that the whole sequence of iterates converges to a so-lution of the problem(truly globally convergent).Furthermore,under suitable conditions,the local superlinear rate of convergence is also established.  相似文献   

14.
In this work, we present a family of iterative methods for solving nonlinear equations. It is proved that these methods have convergence order 8. These methods require three evaluations of the function, and only use one evaluation of the first derivative per iteration. The efficiency of the method is tested on a number of numerical examples. On comparison with the eighth-order methods, the iterative methods in the new family behave either similarly or better for the test examples.  相似文献   

15.
In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order five. Numerical examples show that the new methods are comparable with the well known existing methods and give better results in many aspects.  相似文献   

16.
In this paper, we suggest and analyze a new two-step iterative method for solving nonlinear equations, which is called the modified Householder method without second derivatives for nonlinear equation. We also prove that the modified method has cubic convergence. Several examples are given to illustrate the efficiency and the performance of the new method. New method can be considered as an alternative to the present cubic convergent methods for solving nonlinear equations.  相似文献   

17.
张卷美 《大学数学》2007,23(6):135-139
迭代方法是求解非线性方程近似根的重要方法.本文基于隐函数存在定理,提出了一种新的迭代方法收敛性和收敛阶数的证明方法,并分别对牛顿(Newton)和柯西(Cauchy)迭代方法迭代收敛性和收敛阶数进行了证明.最后,利用本文提出的证明方法,证明了基于三次泰勒(Taylor)展式构成的迭代格式是收敛的,收敛阶数至少为4,并提出猜想,基于n次泰勒展式构成的迭代格式是收敛的,收敛阶数至少为(n+1).  相似文献   

18.
A smoothing-type algorithm for solving system of inequalities   总被引:1,自引:0,他引:1  
In this paper we consider system of inequalities. By constructing a new smoothing function, the problem is approximated via a family of parameterized smooth equations. A Newton-type algorithm is applied to solve iteratively the smooth equations so that a solution of the problem concerned is found. We show that the algorithm is globally and locally quadratically convergent under suitable assumptions. Preliminary numerical results are reported.  相似文献   

19.
Fractional order nonlinear Klein‐Gordon equations (KGEs) have been widely studied in the fields like; nonlinear optics, solid state physics, and quantum field theory. In this article, with help of the Sumudu decomposition method (SDM), a numerical scheme is developed for the solution of fractional order nonlinear KGEs involving the Caputo's fractional derivative. The coupled method provides us very efficient numerical scheme in terms of convergent series. The iterative scheme is applied to illustrative examples for the demonstration and applications.  相似文献   

20.
1. IntroductionThe new aPProaCh is based on the analysis of the motion of a damped harmonic oscillatorin the gravitational field 11]. The associated equation of motion ismXtt + oXt + aX = b (1)where X = X(t), is the one dimensions di8PlaCement of Of a mass m under a dissipation(o > 0), a ~nic potential (a > 0) and a constant acceleration (b, gravitational field). Thetotal energy variation is given by the equationwhereThe solution of the motion equation (1) is given by the sum of two contr…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号