首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Several splittings for non-Hermitian linear systems   总被引:3,自引:0,他引:3  
For large sparse non-Hermitian positive definite system of linear equations,we present several variants of the Hermitian and skew-Hermitian splitting(HSS)about the coefficient matrix and establish correspondingly several HSS-based iterative schemes.Theoretical analyses show that these methods are convergent unconditionally to the exact solution of the referred system of linear equations,and they may show advantages on problems that the HSS method is ineffiective.  相似文献   

2.
In this paper, LCP is converted to an equivalent nonsmooth nonlinear equation system H(x,y) = 0 by using the famous NCP function-Fischer-Burmeister function. Note that some equations in H(x, y) = 0 are nonsmooth and nonlinear hence difficult to solve while the others are linear hence easy to solve. Then we further convert the nonlinear equation system H(x, y) = 0 to an optimization problem with linear equality constraints. After that we study the conditions under which the K-T points of the optimization problem are the solutions of the original LCP and propose a method to solve the optimization problem. In this algorithm, the search direction is obtained by solving a strict convex programming at each iterative point, However, our algorithm is essentially different from traditional SQP method. The global convergence of the method is proved under mild conditions. In addition, we can prove that the algorithm is convergent superlinearly under the conditions: M is P0 matrix and the limit point is a strict complementarity solution of LCP. Preliminary numerical experiments are reported with this method.  相似文献   

3.
Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterative methods and provide a reference for further study and design. Finally, a new iterative method is designed named as the diverse relaxation parameter of the SOR method which, in particular, demonstrates the geometric characteristics. Many examples prove that the method is quite effective.  相似文献   

4.
李荣华  张威威 《东北数学》2004,20(4):441-456
In this paper we study a kind of mixed anti-diffusion method for partial differntial equations. Firstly, we use the method to construct some difference schemes for the conservation laws. The schemes are of second order accuracy and are total variation decreasing (TVD). In particular, there are only three knots involved in the schemes. Secondly, we extend the method to construct a few high accuracy difference schemes for elliptic and parabolic equations. Numerical experiments are carried out to illustrate the efficiency of the method.  相似文献   

5.
An iterative algorithm is proposed and analyzed based on a hybridized mized finite element method for numerically solving two-phase generalized Stefan interface problems with strongly discontinuous solutions,conormal derivatives,and coefficients.This algorithm iteratively solves small problems for each single phase with good accuracy and exchange information at the interface to advance the iteration until convergence ,following the idea of Schwarz Alternating Methods,Error estimates are derived to show that this algorithm always converges provided that relaxation parameters are suitably chosen,Numeric exper-iments with matching and non-matching grids at the interface from different phases are performed to show the accuracy of the method for capturing discontinuities in the solutions and coefficients.In contrast to standard numerical methods,the accuracy of our method does not seem to deteriorate as the coefficient discontinuity increases.  相似文献   

6.
This paper discusses the accelerating of nonlinear parabolic equations. Two iterative methods for solving the implicit scheme new nonlinear iterative methods named by the implicit-explicit quasi-Newton (IEQN) method and the derivative free implicit-explicit quasi-Newton (DFIEQN) method are introduced, in which the resulting linear equations from the linearization can preserve the parabolic characteristics of the original partial differential equations. It is proved that the iterative sequence of the iteration method can converge to the solution of the implicit scheme quadratically. Moreover, compared with the Jacobian Free Newton-Krylov (JFNK) method, the DFIEQN method has some advantages, e.g., its implementation is easy, and it gives a linear algebraic system with an explicit coefficient matrix, so that the linear (inner) iteration is not restricted to the Krylov method. Computational results by the IEQN, DFIEQN, JFNK and Picard iteration methods are presented in confirmation of the theory and comparison of the performance of these methods.  相似文献   

7.
In this paper,we introduce a modified Landweber iteration to solve the sideways parabolic equation,which is an inverse heat conduction problem(IHCP) in the quarter plane and is severely ill-posed.We shall show that our method is of optimal order under both a priori and a posteriori stopping rule.Furthermore,if we use the discrepancy principle we can avoid the selection of the a priori bound.Numerical examples show that the computation effect is satisfactory.  相似文献   

8.
Implicit Runge-Kutta method is highly accurate and stable for stiff initial value prob-lem.But the iteration technique used to solve implicit Runge-Kutta method requires lotsof computational efforts.In this paper,we extend the Parallel Diagonal Iterated Runge-Kutta(PDIRK)methods to delay differential equations(DDEs).We give the convergenceregion of PDIRK methods,and analyze the speed of convergence in three parts for theP-stability region of the Runge-Kutta corrector method.Finally,we analysis the speed-upfactor through a numerical experiment.The results show that the PDIRK methods toDDEs are efficient.  相似文献   

9.
We consider the compound binomial model, and assume that dividends are paid to the shareholders according to an admissible strategy with dividend rates bounded by a constant.The company controls the amount of dividends in order to maximize the cumulative expected discounted dividends prior to ruin. We show that the optimal value function is the unique solution of a discrete HJB equation. Moreover, we obtain some properties of the optimal payment strategy, and offer a simple algorithm for obtaining the optimal strategy. The key of our method is to transform the value function. Numerical examples are presented to illustrate the transformation method.  相似文献   

10.
The Hermitian and skew-Hermitian splitting (HSS) method is an unconditionally convergent iteration method for solving large sparse non-Hermitian positive definite system of linear equations. By making use of the HSS iteration as the inner solver for the Newton method, we establish a class of Newton-HSS methods for solving large sparse systems of nonlinear equations with positive definite Jacobian matrices at the solution points. For this class of inexact Newton methods, two types of local convergence theorems are proved under proper conditions, and numerical results are given to examine their feasibility and effectiveness. In addition, the advantages of the Newton-HSS methods over the Newton-USOR, the Newton-GMRES and the Newton-GCG methods are shown through solving systems of nonlinear equations arising from the finite difference discretization of a two-dimensional convection-diffusion equation perturbed by a nonlinear term. The numerical implemen- tations also show that as preconditioners for the Newton-GMRES and the Newton-GCG methods the HSS iteration outperforms the USOR iteration in both computing time and iteration step.  相似文献   

11.
In this article, we propose a novel modification to Quasi-Newton method, which is now a days popularly known as variation iteration method (VIM) and use it to solve the following class of nonlinear singular differential equations which arises in chemistry $-y''(x)-\frac{\alpha}{x}y''(x)=f(x,y),~x\in(0,1),$ where $\alpha\geq1$, subject to certain two point and three point boundary conditions. We compute the relaxation parameter as a function of Bessel and the modified Bessel functions. Since rate of convergence of solutions to the iterative scheme depends on the relaxation parameter, thus we can have faster convergence. We validate our results for two point and three point boundary conditions. We allow $\partial f/\partial y$ to take both positive and negative values.  相似文献   

12.
The dynamics of a classical third-order Newton-type iterative method is studied when it is applied to degrees two and three polynomials. The method is free of second derivatives which is the main limitation of the classical third-order iterative schemes for systems. Moreover, each iteration consists only in two steps of Newton's method having the same derivative. With these two properties the scheme becomes a real alternative to the classical Newton method. Affine conjugacy class of the method when is applied to a differentiable function is given. Chaotic dynamics have been investigated in several examples. Applying the root-finding method to a family of degree three polynomials, we have find a bifurcation diagram as those that appear in the bifurcation of the logistic map in the interval.  相似文献   

13.
We give some convergence results on the generalized Newton method (referred to by some authors as Newton's method) and the chord method when applied to generalized equations. The main results of the paper extend the classical Kantorovich results on Newton's method to (nonsmooth) generalized equations. Our results also extend earlier results on nonsmooth equations due to Eaves, Robinson, Josephy, Pang and Chan. We also propose inner-iterative schemes for the computation of the generalized Newton iterates. These schemes generalize popular iterative methods (Richardson's method, Jacobi's method and the Gauss-Seidel method) for the solution of linear equations and linear complementarity problems and are shown to be convergent under natural generalizations of classical convergence criteria. Our results are applicable to equations involving single-valued functions and also to a class of generalized equations which includes variational inequalities, nonlinear complementarity problems and some nonsmooth convex minimization problems.  相似文献   

14.
基于Thiele连分式,重新建立了求解非线性方程的经典的Newton迭代公式.为了避免求导数运算,采用差商可以近似代替导数的办法,得到Newton迭代方法的几个变体并给出了其收敛的阶数.最后,数值实例证实了这些迭代格式是有效的.  相似文献   

15.
Under weak conditions, we present an iteration formula to improve Newton's method for solving nonlinear equations. The method is free from second derivatives, permitting f(x)=0 in some points and per iteration it requires two evaluations of the given function and one evaluation of its derivative. Analysis of convergence demonstrates that the new method is cubically convergent. Some numerical examples illustrate that the algorithm is more efficient and performs better than classical Newton's method.  相似文献   

16.
In this paper, we investigate the following $(\alpha,\beta)$-functional equations $$ 2f(x)+2f(z)=f(x-y)+\alpha^{-1}f(\alpha (x+z))+\beta^{-1}f(\beta(y+z)),~~~~~~~~~(0.1) $$ $$ 2f(x)+2f(y)=f(x+y)+\alpha^{-1}f(\alpha(x+z)) +\beta^{-1}f(\beta(y-z)),~~~~~~~~~~~(0.2) $$ where $\alpha,\beta$ are fixed nonzero real numbers with $\alpha^{-1}+\beta^{-1}\neq 3$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the $(\alpha,\beta)$-functional equations $(0.1)$ and $(0.2)$ in non-Archimedean Banach spaces.  相似文献   

17.
In this paper, the existence of solutions to a class of fractional differential equations $D_{0+}^{\alpha}u(t)=h(t)f(t, u(t), D_{0+}^{\theta}u(t))$ is obtained by an efficient and simple monotone iteration method. At first, the existence of a solution to the problem above is guaranteed by finding a bounded domain $D_M$ on functions $f$ and $g$. Then, sufficient conditions for the existence of monotone solution to the problem are established by applying monotone iteration method. Moreover, two efficient iterative schemes are proposed, and the convergence of the iterative process is proved by using the monotonicity assumption on $f$ and $g$. In particular, a new algorithm which combines Gauss-Kronrod quadrature method with cubic spline interpolation method is adopted to achieve the monotone iteration method in Matlab environment, and the high-precision approximate solution is obtained. Finally, the main results of the paper are illustrated by some numerical simulations, and the approximate solutions graphs are provided by using the iterative method.  相似文献   

18.
In this paper, we develop a two-grid method (TGM) based on the FEM for 2D nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations. A two-grid algorithm is proposed for solving the nonlinear system, which consists of two steps: a nonlinear FE system is solved on a coarse grid, then the linearized FE system is solved on the fine grid by Newton iteration based on the coarse solution. The fully discrete numerical approximation is analyzed, where the Galerkin finite element method for the space derivatives and the finite difference scheme for the time Caputo derivative with order $\alpha\in(1,2)$ and $\alpha_{1}\in(0,1)$. Numerical stability and optimal error estimate $O(h^{r+1}+H^{2r+2}+\tau^{\min\{3-\alpha,2-\alpha_{1}\}})$ in $L^{2}$-norm are presented for two-grid scheme, where $t,$ $H$ and $h$ are the time step size, coarse grid mesh size and fine grid mesh size, respectively. Finally, numerical experiments are provided to confirm our theoretical results and effectiveness of the proposed algorithm.  相似文献   

19.
This paper investigates the orbital stability of periodic traveling wave solutions to the generalized Long-Short wave equations $\left\{\begin{array}{l}i\varepsilon_{t}+\varepsilon_{xx}=n\varepsilon+\alpha|\varepsilon|^{2}\varepsilon,\\n_{t}=(|\varepsilon|^{2})_{x}, x\in R.\end{array} \right.$ Firstly, we show that there exist a smooth curve of positive traveling wave solutions of dnoidal type with a fixed fundamental period $L$ for the generalized Long-Short wave equations. Then, combining the classical method proposed by Benjamin, Bona et al., and detailed spectral analysis given by using Lame equation and Floquet theory, we show that the dnoidal type periodic wave solution is orbitally stable by perturbations with period $L$. As the modulus of the Jacobian elliptic function $k\rightarrow 1$, we obtain the orbital stability results of solitary wave solution with zero asymptotic value for the generalized Long-Short equations. In particular, as $\alpha=0$, we can also obtain the orbital stability results of periodic wave solutions and solitary wave solutions for the long-short wave resonance equations. The results in the present paper improve and extend the previous stability results of long-shore wave equations and its extension equations.  相似文献   

20.
本文给出了求解非线性方程的一种新的改进方法.利用Newton法和Heron平均,将新改进方法与其它一些迭代法作比较.数值结果表明该方法具有一定的实用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号