首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Kim  Eungab  Van Oyen  Mark P. 《Queueing Systems》1998,29(2-4):193-229
We consider scheduling a shared server in a two-class, make-to-stock, closed queueing network. We include server switching costs and lost sales costs (equivalently, server starvation penalties) for lost jobs. If the switching costs are zero, the optimal policy has a monotonic threshold type of switching curve provided that the service times are identical. For completely symmetric systems without set-ups, it is optimal to serve the longer queue. Using simple analytical models as approximations, we derive a heuristic scheduling policy. Numerical results demonstrate the effectiveness of our heuristic, which is typically within 10% of optimal. We also develop and test a heuristic policy for a model in which the shared resource is part of a series network under a CONWIP release policy. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
This paper considers the problem of determining optimal control policies for empty vehicle repositioning and fleet-sizing in a two-depot service system with uncertainties in loaded vehicle arrival at depots and repositioning times for empty vehicles in the fleet. The objective is to minimise the sum of the costs incurred by vehicle maintenance, empty vehicle repositioning and vehicle leasing. A novel integrated model is presented. The optimal empty repositioning policy for a particular fleet size is shown to be of the threshold control type. The explicit form of the cost function under such threshold controls is obtained. The optimal threshold values and fleet-size are then derived. Numerical examples are given to demonstrate the results.  相似文献   

3.
In this paper, we develop a three-step heuristic to address a production scheduling problem at a high volume assemble-to-order electronics manufacturer. The heuristic provides a solution for scheduling multiple product families on parallel, identical production lines so as to minimize setup costs. The heuristic involves assignment, sequencing, and time scheduling steps, with an optimization approach developed for each step. For the most complex step, the sequencing step, we develop a greedy randomized adaptive search procedure (GRASP). We compare the setup costs resulting from the use of our scheduling heuristic against a heuristic previously developed and implemented at the electronics manufacturer that assumes approximately equal, sequence-independent, setup costs. By explicitly considering the sequence-dependent setup costs and applying GRASP, our empirical results show a reduction in setups costs for an entire factory of 14–21% with a range of single production line reductions from 0% to 49%.  相似文献   

4.
Almost all of the research on the economic lot scheduling problem (ELSP) has assumed that setup times are sequence-independent even though sequence-dependent problems are common in practice. Furthermore, most of the solution approaches that have been developed solve for a single optimal schedule when in practice it is more important to provide managers with a range of schedules of different length and complexity. In this paper, we develop a heuristic procedure to solve the ELSP problem with sequence-dependent setups. The heuristic provides a range of solutions from which a manager can choose, which should prove useful in an actual stochastic production environment. We show that our heuristic can outperform Dobson's heuristic when the utilization is high and the sequence-dependent setup times and costs are significant.  相似文献   

5.
We study the dynamic assignment of flexible servers to stations in the presence of setup costs that are incurred when servers move between stations. The goal is to maximize the long-run average profit. We provide a general problem formulation and some structural results, and then concentrate on tandem lines with two stations, two servers, and a finite buffer between the stations. We investigate how the optimal server assignment policy for such systems depends on the magnitude of the setup costs, as well as on the homogeneity of servers and tasks. More specifically, for systems with either homogeneous servers or homogeneous tasks, small buffer sizes, and constant setup cost, we prove the optimality of “multiple threshold” policies (where servers’ movement between stations depends on both the number of jobs in the system and the locations of the servers) and determine the values of the thresholds. For systems with heterogeneous servers and tasks, small buffers, and constant setup cost, we provide results that partially characterize the optimal server assignment policy. Finally, for systems with larger buffer sizes and various service rate and setup cost configurations, we present structural results for the optimal policy and provide numerical results that strongly support the optimality of multiple threshold policies.  相似文献   

6.
This paper studies the scheduling problem for two products on a single production facility. The objective is to specify a production and setup policy that minimizes the average inventory, backlog, and setup costs. Assuming that the production rate can be adjusted during the production runs, we provide a close form for an optimal production and setup schedule. Dynamic programming and Hamilton–Jacobi–Bellman equation is used to verify the optimality of the obtained policy.  相似文献   

7.
This paper deals with the optimal scheduling of a one-machine two-product manufacturing system with setup, operating in a continuous time dynamic environment. The machine is reliable. A known constant setup time is incurred when switching over from a part to the other. Each part has specified constant processing time and constant demand rate, as well as an infinite supply of raw material. The problem is formulated as a production flow control problem. The objective is to minimize the sum of the backlog and inventory costs incurred over a finite planning horizon. The global optimal solution, expressed as an optimal feedback control law, provides the optimal production rate and setup switching epochs as a function of the state of the system (backlog and inventory levels). For the steady-state, the optimal cyclic schedule (Limit Cycle) is determined. This is equivalent to solving a one-machine two-product Lot Scheduling Problem. To solve the transient case, the system's state space is partitioned into mutually exclusive regions such that with each region is associated an optimal control policy. A novel algorithm (Direction Sweeping Algorithm) is developed to obtain the optimal state trajectory (optimal policy that minimizes the sum of inventory and backlog costs) for this last case.  相似文献   

8.
This papers considers admission control and scheduling of customer orders in a production system that produces different items on a single machine. Customer orders drive the production and belong to product families, and have family dependent due-date, size, and reward. When production changes from one family to another a setup time is incurred. Moreover, if an order cannot be accepted, it is considered lost upon arrival. The problem is to find a policy that accepts/rejects and schedules orders such that long run profit is maximized. This problem finds its motivation in batch industries in which suppliers have to realize high machine utilization while delivery times should be short and reliable and the production environment is subject to long setup times.We model the joint admission control/scheduling problem as a Markov decision process (MDP) to gain insight into the optimal control of the production system and use the MDP to benchmark the performance of a simple heuristic acceptance/scheduling policy. Numerical results show that the heuristic performs very well compared with the optimal policy for a wide range of parameter settings, including product family asymmetries in arrival rate, order size, and order reward.  相似文献   

9.
《Optimization》2012,61(2):275-289
A detailed analysis of inventory models without setup costs, arbitrary demand distribution and arbitrary demand and cost pattern is given. First it is shown that the corresponding one-period model without ordering costs may be reduced to another simpler one with appropriately modified demand distribution. Several representations are given for the modified demand distribution. As one of the main results this reduction turns out to be robust in most cases. In a final chapter the results are applied to the determination of an optimal policy for a class of N-period inventory models with convex holding-and shortage costs and without setup costs.  相似文献   

10.
This paper addresses the capacitated lot-sizing problem involving the production of multiple items on unrelated parallel machines. A production plan should be determined in order to meet the forecast demand for the items, without exceeding the capacity of the machines and minimize the sum of production, setup and inventory costs. A heuristic based on the Lagrangian relaxation of the capacity constraints and subgradient optimization is proposed. Initially, the heuristic is tested on instances of the single machine problem and results are compared with heuristics from the literature. For parallel machines and small problems the heuristic performance is tested against optimal solutions, and for larger problems it is compared with the lower bound provided by the Lagrangian relaxation.  相似文献   

11.
赵玲  刘志学 《运筹与管理》2022,31(6):105-110
为了吸引更多顾客,许多电子商务零售商允许顾客在一定时间内退货,导致其利润明显减少。同时,在补货时不仅产生依赖补货量的变动成本,而且会产生与补货量无关的固定成本。基于此,以最大化电子商务零售商的利润为目标,建立考虑顾客退货和固定成本的联合补货与定价模型,其中顾客的退货量与满足的需求呈正比。在一般需求情形下,部分刻画多期问题的最优策略;在特殊需求情形下,证明(s,S,p)策略对单期问题最优,并对多期问题的最优策略进行严格刻画。根据已有刻画为多期问题构造启发式策略。数值结果表明启发式策略近似最优;当初始库存水平足够高/低时,最优补货水平和定价随退货率与固定成本单调变化。关键词:联合补货与定价模型;顾客退货;固定成本;随机动态规划;最优策略  相似文献   

12.
This paper deals with the optimal control of a one-machine two-product manufacturing system with setup changes, operating in a continuous time dynamic environment. The system is deterministic. When production is switched from one product to the other, a known constant setup time and a setup cost are incurred. Each product has specified constant processing time and constant demand rate, as well as an infinite supply of raw material. The problem is formulated as a feedback control problem. The objective is to minimize the total backlog, inventory and setup costs incurred over a finite horizon. The optimal solution provides the optimal production rate and setup switching epochs as a function of the state of the system (backlog and inventory levels). For the steady state, the optimal cyclic schedule is determined. To solve the transient case, the system's state space is partitioned into mutually exclusive regions such that with each region, the optimal control policy is determined analytically.  相似文献   

13.
Inventory policies for joint remanufacturing and manufacturing have recently received much attention. Most efforts, though, were related to (optimal) policy structures and numerical optimization, rather than closed form expressions for calculating near optimal policy parameters. The focus of this paper is on the latter. We analyze an inventory system with unit product returns and demands where remanufacturing is the cheaper alternative for manufacturing. Manufacturing is also needed, however, since there are less returns than demands. The cost structure consists of setup costs, holding costs, and backorder costs. Manufacturing and remanufacturing orders have non-zero lead times. To control the system we use certain extensions of the familiar (s, Q) policy, called push and pull remanufacturing policies. For all policies we present simple, closed form formulae for approximating the optimal policy parameters under a cost minimization objective. In an extensive numerical study we show that the proposed formulae lead to near-optimal policy parameters.  相似文献   

14.
We develop a Lagrangean relaxation-based heuristic procedure to generate a near-optimal solution to large-scale capacitated part-routing problems through a cellular manufacturing system with both routing flexibilities and setup times. Several alternate process plans exist for each product. Any given operation can be performed on alternate machines at different costs. The part demands can be satisfied from internal production or through outsourcing. The objective is to minimize the total material handling, production, outsourcing, and setup costs, subject to satisfying all the part demands and not exceeding any of the machine capacity limits. Our computational experiments show that large problems involving several thousand products and decision variables can be solved in a reasonable amount of computer time to within 1% of their optimal solutions. The proposed procedure is general enough to be applied directly or with slight modifications to real-life, industrial-sized problems.  相似文献   

15.
The classical deterministic inventory model is considered for the case of constant time between each replenishment and linear trend in demand. The optimum policy is derived and shown to apply to both positive and negative trends. This policy is used in two examples considered in earlier papers on linear trend. It is shown to give only slightly higher costs than the optimal policy with varying replenishment periods, and is compared with a recent heuristic for that case.  相似文献   

16.
This paper develops an optimization modeling approach for analyzing the trade-off between the cost of a larger fleet of tractors and the cost of repositioning tractors for a trucking company operating a consolidation network, such as a less-than-truckload (LTL) company. Specifically, we analyze the value of using extra tractor repositioning moves (in addition to the ones required to balance resources throughout the network) to reduce the fixed costs of owning or leasing a tractor fleet during a planning horizon. We develop network flow optimization models, some with side constraints and nonlinear objective functions, using event-based, time-expanded networks to determine appropriate fleet sizes and extra repositioning moves under different repositioning strategies, and we compare the optimal costs of the strategies. For repositioning costs, two different cost schemes are explored: one linear and one nonlinear. Computational experiments using real data from a national LTL carrier compare the total system costs obtained with four different strategies and show that extra repositioning may indeed enable fleet size reductions and concomitant cost savings.  相似文献   

17.
Library customers can soon order books online and specify a location to collect them from. Libraries exchange books between locations to meet these requests. Two types of exchanges take place: transshipments from library to library to fulfill the requests and rebalancing to redistribute books between libraries. This research determines optimal decisions for transshipments and rebalancing, so that logistic costs in the library system are minimized. In current practice, libraries typically send the book back to the original library after return. We consider a more general policy, in which we rebalance books in anticipation of demand. Moreover, we determine the optimal location from which to transship a book when it is unavailable at the location of demand. By means of stochastic dynamic programming, we derive the optimal policy for small instances. For larger instances we present two heuristics: the cluster and the expected shortage reduction (ESR) heuristic. The ESR heuristic proves to be near-optimal and significantly outperforms current practice.  相似文献   

18.
Inventory systems for joint remanufacturing and manufacturing have recently received considerable attention. In such systems, used products are collected from customers and are kept at the recoverable inventory warehouse for future remanufacturing. In this paper a production–remanufacturing inventory system is considered, where the demand can be satisfied by production and remanufacturing. The cost structure consists of the EOQ-type setup costs, holding costs and shortage costs. The model with no shortage case in serviceable inventory is first studied. The serviceable inventory shortage case is discussed next. Both models are considered for the case of variable setup numbers of equal sized batches for production and remanufacturing processes. For these two models sufficient conditions for the optimal type of policy, referring to the parameters of the models, are proposed.  相似文献   

19.
20.
本文研究了单个承运商和两个货运代理在双向港口间提供往返货运服务的航运服务链。由于港口间货运需求的内在不平衡,货运公司在多港口间的空箱调运会产生巨大的空箱调运费用。分别构建了承运商承担和承运商与货运代理共同承担空箱调运的数学模型,通过数学模型和数值算例分析了不同市场条件下的空箱调运责任和运力定价策略。研究发现承运商和货运代理是否采用定价策略来平衡需求取决于双向港口间货运市场的潜在需求差异。同时,承运商与货运代理的空箱调运分摊为非此即彼策略,当空箱调运成本大于某阈值时,承运商独自承担空箱调运责任;反之,货运代理承担空箱调运责任。而且货运代理承担模式增加整个海运链的利润,但进一步加剧空箱的不平衡状况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号