首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The deformation behavior of a 4D composite reinforced along cube diagonals under large tensile deformations is examined. The investigation is based on an applied theory which allows one to perform a macromechanical analysis of composite materials with small volume contents of reinforcing yarns with an accuracy sufficient in practice. It is found that, under large deformations, the properties of composites reinforced along cube diagonals differ qualitatively from their properties under small deformations. The evolution of the structural geometry of the deformed composite material is traced.  相似文献   

2.
Soft shells made of elastomers and undergoing large deformations under load are studied. The inverse design problem, non-linear under large deformations, is solved. The results obtained are illustrated on a two-parameter shell of revolution fabricated from a two-constant material. The problems of coupling the biaxial and uniaxial zones of the shell and of designing the composite shell are clarified. Amongst the papers dealing with the theory of soft shells and, generally, under small deformations, /1–7/ merit attention.  相似文献   

3.
In this paper, free vibration analysis of cracked composite beam subjected to coupled bending–torsion loading is presented. The composite beam is assumed to have an open edge crack of length a. A first order shear deformation theory is applied to count for the effect of shear deformations on natural frequencies as well as the effect of coupling in torsion and bending modes of vibration. Governing equations and boundary conditions are derived using Hamilton principle. Local flexibility matrix is used to obtain the additional boundary conditions of the beam in cracked area. After obtaining the governing equations and boundary conditions, generalized differential quadrature (GDQ) method is applied to solve the obtained eigenvalue problem. Finally, some numerical results of beams with various boundary conditions and different fiber orientations are given to show the efficiency of the method. In addition, to study the effect of shear deformations, numerical results of the current model are compared with previously given results in which shear deformations were neglected.  相似文献   

4.
In the present work, a model of nonlinear deformation of stochastic composites under microdamaging is developed for the case of a composite with orthotropic inclusions, when microdefects are accumulated in the matrix. The composite is treated as an isotropic matrix strengthened by triaxial arbitrarily oriented ellipsoidal inclusions with orthotropic symmetry of the elastic properties. It is assumed that the process of loading leads to accumulation of damage in the matrix. Fractured microvolumes are modeled by a system of randomly distributed quasispherical pores. The porosity balance equation and relations for determining the effective elastic modules in the case of orthotropic components are taken as basic relations. The fracture criterion is specified as the limiting value of the intensity of average shear stresses acting in the intact part of the material. On the basis of the analytic and numerical approach, we propose an algorithm for the determination of nonlinear deformation properties of the investigated material. The nonlinearity of composite deformations is caused by the finiteness of deformations. By using the numerical solution, the nonlinear stress–strain diagrams are predicted and discussed for an orthotropic composite material for various cases of orientation of inclusions in the matrix.  相似文献   

5.
The elastic properties of unidirectionally reinforced composite materials under large deformations are studied. The applied model for deformation of materials is based on the structural macroscopic theory of stiff and soft composites, including micro- and macromechanical levels of analysis of composite media. The properties of unidirectional elastomeric composites are studied in tension and shear in the plane of reinforcement. The microscopic fields in the structural components of composites having poorly compressible and compressible matrices are also analyzed. Changes in the parameters of macroscopic deformation of the composites are examined as functions of the loading parameters and initial conditions of the structure. The evolution of the structural changes in deformed composite materials is described.State Metallurgical Academy of Ukraine, Dnepropetrovsk, Ukraine. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 1, pp. 29–50, January–February, 1999.  相似文献   

6.
The deformation of pressure vessel domes in asymmetric winding with the use of two families of yarns is accompanied by shear deformations and torsion. For the case of large deformations, a system of equations for describing the stress-strain state of an asymmetrically reinforced netlike shell of revolution loaded with an internal pressure is obtained. It is shown that the shear deformations depend on the deformations of both the yarn families and the deformations of meridians and parallels of the shell. As an example, the dome of a pressure vessel in a deformed state is calculated for an initial equilibrium shape determined on the assumption that the yarns are inextensible. __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 42, No. 4, pp. 425–432, July–August, 2006.  相似文献   

7.
An analysis of the current state of the geometrically non-linear theory of elasticity and of thin shells is presented in the case of small deformations but large displacements and rotations, the ratios of which are known as the ratios of the non-linear theory in the quadratic approximation. It is shown that they required specific revision and correction by virtue of the fact that, when they are used in the solution of problems, spurious bifurcation points appear. In view of this, consistent geometrically non-linear equations of the theory of thin shells of the Timoshenko type are constructed in the quadratic approximation which enable one to investigate in a correct formulation both flexural as well as previously unknown non-classical forms of loss of stability (FLS) of thin plates and shells, many of which are encountered in practice, primarily in structures made of composite materials with a low shear stiffness. In the case of rectilinear elastic whereas, which are subjected to the action of conservative external forces and are made of an orthotropic material, the three-dimensional equations of the theory of elasticity are reduced to one-dimensional equations by using the Timoshenko model. Two versions of the latter equations are derived. The first of these corresponds to the use of the consistent version of the three-dimensional, geometrically non-linear relations in an incomplete quadratic approximation and the Timoshenko model without taking account of the transverse stretching deformations, and the second corresponds to the use of the three- dimensional relations in the complete quadratic approximation and the Timoshenko model taking account of the transverse stretching deformations. A series of new non-classical problems of the stability of columns is formulated and their analytical solutions are found using the equations which have been derived with the aim of analyzing their richness of content. Among these are problems concerning the torsional, flexural and shear FLS of a column in the case of a longitudinal axial, bilateral transverse and trilateral compression, a flexural-torsional FLS in the case of pure bending and axial compression together with pure bending and, also, a flexural FLS of a column in the case of torsion and a flexural-torsional FLS under conditions of pure shear. Five FLS of a cylindrical shell under torsion are investigated using the linearized neutral equilibrium equations which have been constructed: 1) a torsional FLS where the solution corresponding to it has a zero variability of the functions in the peripheral direction, 2) a purely beam bending FLS that is possible in the case of long shells and is accompanied by the formation of a single half-wave along the length of the shell while preserving the initial circular form of the cross-section, 3) a classical bending FLS, which is accompanied by the formation of a small number of half-waves in the axial direction and a large number of half-waves in a peripheral direction which is true in the case of long shells, 4) a classical bending FLS which holds in the case of short and medium length shells (the third and fourth types of FLS have already been thoroughly studied in the case of isotropic cylindrical shells), 5) a non-classical FLS characterized by the formation of a large number of shallow depressions in the axial as well as in the peripheral directions; the critical value of the torsional moment corresponding to this FLS is practically independent of the relative thickness of the shell. It is established that the well-known equations of the geometrically non-linear theory of shells, which were formulated for the case of the mean flexure of a shell, do not enable one to reveal the first, second and fifth non-classical FLS.  相似文献   

8.
基于Reddy高阶剪切变形理论的Kármám-Donnell型非线性壳体方程,给出复合材料层合剪切圆柱曲板在侧压作用下的后屈曲分析。将壳体屈曲的边界层理论推广到复合材料层合剪切圆柱曲板受侧压作用的情况。相应的奇异摄动法,用于确定圆柱曲板的屈曲荷载和后屈曲平衡路径。分析中同时考虑非线性前屈曲变形和初始几何缺陷的影响。数值算例给出完善和非完善,中等厚度正交铺设层合圆柱曲板的后屈曲荷载-挠度曲线。讨论了横向剪切变形,曲板几何参数,铺层数,铺展方式和初始几何缺陷等各种参数变化的影响。  相似文献   

9.
A rubber-cord composite, reinforced in two directions with fibers of polyamide cord, under large tensile deformations is investigated based on calculations of a rubber-cord composite material and on tensile tests of specimens made of the casing of a diagonal truck tire. A method of the experimental tensile testing of rubber-cord composite specimens is described. The calculations are based on the carcass theory of composite materials. The calculated and experimental parameters of the macroscopic strains of the rubber tire cord and of its structure in a deformed configuration are given. The manifestation of edge effects in relation to the reinforcement angle is described.  相似文献   

10.
The elastic properties of 3D elastomeric composite materials under large deformations are considered. The investigation is based on the structural macroscopic theory of stiff and soft composites. The results of micro- and macromechanical analyses of composite materials with compressible and poorly compressible matrices are presented. The character of interaction between the fibers of various reinforcing systems in these matrices is revealed. The deformation characteristics of the composites in tension and shear are presented as functions of their orientation and loading parameters. The evolution of the configuration of a composite material with a compressible matrix during loading is traced.  相似文献   

11.
In the present paper, a model of deformation of stochastic composites under microdamaging is developed for the case of orthotropic composite, when the microdamages are accumulated in the matrix. The composite is treated as an isotropic matrix strengthened by three-axial ellipsoidal inclusions with orthotropic symmetry of elastic properties. It is assumed that the loading process leads to accumulation of damages in the matrix. Fractured microvolumes are modeled by a system of randomly distributed quasispherical pores. The porosity balance equation and relations for determining the effective elastic moduli for the case of a composite with orthotropic components are taken as the basic relations. The fracture criterion is assumed to be given as the limit value of the intensity of average shear stresses occurring in the undamaged part of the material. Based on the analytical and numerical approach, an algorithm for the determination of nonlinear deformation properties of such a material is constructed. The nonlinearity of composite deformations is caused by the accumulation of microdamages in the matrix. Using the numerical solution, nonlinear stress-strain diagrams for the orthotropic composite in the case of biaxial extension are obtained. Published in Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 51, No. 1, pp. 121–130, January–March, 2008.  相似文献   

12.
This paper presents experimental and numerical methods to perform simulations of the mechanical behavior of textile reinforced composites and structures. The first aspect considered refers to the meso-to-macro transition in the framework of the finite element (FE) method. Regarding an effective modelling strategy the Binary Model is used to represent the discretized complex architecture of the composite. To simulate the local response and to compute the macroscopic stress and stiffness undergoing small strain a user routine is developed. The results are transfered to the macroscopic model during the solution process. The second aspect concerns the configuration of the fiber orientation and textile shear deformation in complex structural components. To take these deformations which affect the macroscopic material properties into account they are regarded in a macroscopic FE model. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Results are given of an experimental investigation of the combined periodic axial and shear deformation of polymers in the viscous-flow state. Specimens in the form of right cylinders were disposed between two parallel plates to which the material adhered completely. The experimental data are compared with those obtained under simple shear. The results indicate that, with combined periodic axial and shear deformation, nonlinear shear deformations affect the axial viscoelastic properties and nonlinear axial deformations affect the shear properties of the material.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 5, pp. 880–885, September–October, 1972.  相似文献   

14.
Starting from the consistent version of the geometrically non-linear equations of the theory of elasticity for small deformations and arbitrary displacements, a Timoshenko-type model that takes account of shear and compression deformations and also an extended variational Lagrange principle, an improved geometrically non-linear theory of static deformation is constructed for reinforced thin-walled structures with shell elements, the end sections of which are connected by a rod. It is based on the introduction into the treatment of contact forces and torques as unknowns on the lines joining the shells to the rods and it enables all classical and non-classical forms of loss of stability in structures of the class considered to be investigated. An analytical solution of the problem of the stability of a rectangular plate, that is under compression in one direction, supported by a hinge along two opposite edges and joined by a hinge with an elastic rod on one of the other two edges, is found using a simplified version of the linearized equations.  相似文献   

15.
We consider the propagation of elastic waves in soft composite materials undergoing large deformations. The analysis is performed in terms of small amplitude motions superimposed on a deformed state. By consideration of 2D periodic laminates and 3D fiber composites, we find that an applied deformation influences the elastic waves through the change in the microstructure, and through the change in the local material properties. These effects can be significantly amplified by the deformation induced elastic instability phenomenon leading to microstructure transformations. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
《Applied Mathematics Letters》2005,18(11):1312-1318
We derive a general expression for an interface parameter which makes possible the design of a neutral elliptic inhomogeneity when the stress field in the surrounding matrix is a polynomial function of nth order and the composite is subjected to antiplane shear deformations.  相似文献   

17.
Analysis of a second-approximation refined shear model for shallow layered composite shells and plates with a substantially inhomogeneous structure over the thickness is presented. The tangential displacements and corresponding normal stresses are expressed in the form of a polynomial of the fith degree in the transverse coordinate and contain squared rigidity characteristics. In this way, the accuracy of results and practical coincidence with the 3D solutions is ensured. Based on the refined model, a theory of shallow layered shells is developed. A system of resolving equations of sixteenth power together with appropriate boundary conditions was obtained and solved analytically. It is shown that the area of application of the formed model is extended as compared with the model of the first approximation. The model proposed allows us to examine the stress-strain state of layered composite structures of substantially different thickness and physical-mechanical characteristics of the layers, including the possibility of simulating relatively large shear deformations of rigid layers separated by a low-modulus thin interlayer pliable to transverse shear.Presented at the 10th International Conference on the Mechanics of Composite Materials (Riga, April 20–23, 1998).Ukrainian Transport University, Kiev, Ukraine. Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 3, pp. 363–370, May–June, 1998.  相似文献   

18.
Open cell aluminum metal foams are a new kind of material that are used in composite structures to reduce their weight, to increase their sound or energy absorption capability or to decrease their thermal conductivity. The design and analysis of such structures requires a macroscopic constitutive model of the foam that has to be determined by various experiments under different loading conditions. We support this procedure by analyzing the microstructure of the metal foam numerically under large deformations. To this end, we employ the finite cell method that can deal with large deformations and allows for an automatic and efficient discretization of the CT-image of the foam. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In this paper we derive the field of displacements and strains for thin-walled open composite beams with composite laminated material including in their kinematics flexural and torsional shear deformations effects. The equilibrium equations are defined through the variational formulation and show that is possible to formulate Co finite elements taking into account the torsional shear deformation. Stress-strain relationships for the cross-section of thin-walled composite beams are obtained by extending first-order laminate (FSDT: first-order shear deformation) theory and using a «free stress resultant condition at the boundary». Three different one-dimensional finite elements with Co continuity are formulated for the study of thin-walled open composite beams and they are labelled as BSW (beam with shear and warping). The influence of the integration strategy in the BSW elements is evaluated via the shear-locking phenomenon and the rate of convergence for displacements and rotations. The stiffness matrix integration is compared using exact and reduced integration methods. Examples of pure torsion and flexo-torsion in a cantilever composite beam are performed. Numerical results are compared to those reported by other authors.  相似文献   

20.
Based on a previously constructed, consistent version of the geometrically non-linear equations of elasticity theory, for small deformations and arbitrary displacements, and a Timoshenko-type model taking into account transverse shear and compressive deformations, one-dimensional equations of an improved theory are derived for plane curvilinear rods of arbitrary type for arbitrary displacements and revolutions and with loading of the rods by follower and non-follower external forces. These equations are used to construct linearized equations of neutral equilibrium that enable all possible classical and non-classical forms of loss of stability (FLS) of rods of orthotropic material to be investigated, ignoring parametric deformation terms in the equations. These linearized equations are used to find accurate analytical solutions of the problem of plane classical flexural-shear and non-classical flexural-torsional FLS of a circular ring under the combined and separate action of a uniform external pressure and a compression in the radial direction by forces applied to both faces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号