首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starting from the consistent version of the geometrically non-linear equations of the theory of elasticity for small deformations and arbitrary displacements, a Timoshenko-type model that takes account of shear and compression deformations and also an extended variational Lagrange principle, an improved geometrically non-linear theory of static deformation is constructed for reinforced thin-walled structures with shell elements, the end sections of which are connected by a rod. It is based on the introduction into the treatment of contact forces and torques as unknowns on the lines joining the shells to the rods and it enables all classical and non-classical forms of loss of stability in structures of the class considered to be investigated. An analytical solution of the problem of the stability of a rectangular plate, that is under compression in one direction, supported by a hinge along two opposite edges and joined by a hinge with an elastic rod on one of the other two edges, is found using a simplified version of the linearized equations.  相似文献   

2.
An analysis of the current state of the geometrically non-linear theory of elasticity and of thin shells is presented in the case of small deformations but large displacements and rotations, the ratios of which are known as the ratios of the non-linear theory in the quadratic approximation. It is shown that they required specific revision and correction by virtue of the fact that, when they are used in the solution of problems, spurious bifurcation points appear. In view of this, consistent geometrically non-linear equations of the theory of thin shells of the Timoshenko type are constructed in the quadratic approximation which enable one to investigate in a correct formulation both flexural as well as previously unknown non-classical forms of loss of stability (FLS) of thin plates and shells, many of which are encountered in practice, primarily in structures made of composite materials with a low shear stiffness. In the case of rectilinear elastic whereas, which are subjected to the action of conservative external forces and are made of an orthotropic material, the three-dimensional equations of the theory of elasticity are reduced to one-dimensional equations by using the Timoshenko model. Two versions of the latter equations are derived. The first of these corresponds to the use of the consistent version of the three-dimensional, geometrically non-linear relations in an incomplete quadratic approximation and the Timoshenko model without taking account of the transverse stretching deformations, and the second corresponds to the use of the three- dimensional relations in the complete quadratic approximation and the Timoshenko model taking account of the transverse stretching deformations. A series of new non-classical problems of the stability of columns is formulated and their analytical solutions are found using the equations which have been derived with the aim of analyzing their richness of content. Among these are problems concerning the torsional, flexural and shear FLS of a column in the case of a longitudinal axial, bilateral transverse and trilateral compression, a flexural-torsional FLS in the case of pure bending and axial compression together with pure bending and, also, a flexural FLS of a column in the case of torsion and a flexural-torsional FLS under conditions of pure shear. Five FLS of a cylindrical shell under torsion are investigated using the linearized neutral equilibrium equations which have been constructed: 1) a torsional FLS where the solution corresponding to it has a zero variability of the functions in the peripheral direction, 2) a purely beam bending FLS that is possible in the case of long shells and is accompanied by the formation of a single half-wave along the length of the shell while preserving the initial circular form of the cross-section, 3) a classical bending FLS, which is accompanied by the formation of a small number of half-waves in the axial direction and a large number of half-waves in a peripheral direction which is true in the case of long shells, 4) a classical bending FLS which holds in the case of short and medium length shells (the third and fourth types of FLS have already been thoroughly studied in the case of isotropic cylindrical shells), 5) a non-classical FLS characterized by the formation of a large number of shallow depressions in the axial as well as in the peripheral directions; the critical value of the torsional moment corresponding to this FLS is practically independent of the relative thickness of the shell. It is established that the well-known equations of the geometrically non-linear theory of shells, which were formulated for the case of the mean flexure of a shell, do not enable one to reveal the first, second and fifth non-classical FLS.  相似文献   

3.
To validate earlier results for the case of arbitrary deformations and displacements in orthogonal curvilinear coordinates, kinematic and static relations of the non-linear theory of elasticity are set up which, in the limit of small deformations, lead, unlike the known relations, to correct and consistent relations. The same relations are also constructed for momentless shells of general form for the case of arbitrary displacements and deformations on the basis of which the problem of the static instability of a cylindrical shell with closed ends, made of a linearly elastic material and under conditions of an internal pressure (the problem of the inflation of a cylinder), is considered. It is shown that, in the case of momentless shells, the components of the true sheat stresses are symmetrical, unlike the three-dimensional case. All the above-mentioned relations are constructed for the loading of deformable bodies both by conservative external forces of constant directions and, also, by two types of “following” forces.  相似文献   

4.
自然弯扭梁广义翘曲坐标的求解   总被引:1,自引:0,他引:1  
虞爱民  易明 《应用数学和力学》2004,25(10):1067-1075
提出了自然弯扭梁受复杂载荷作用时静力分析的一种理论方法,重点在于对控制方程的求解,其中考虑了与扭转有关的翘曲变形和横向剪切变形的影响.在特殊的情况下,可以比较容易地得到这些方程的解答,包括各种内力、应力、应变和位移的计算.算例给出了平面曲梁受水平和垂直分布载荷作用时广义翘曲坐标的求解方法.计算结果表明,求得的应力和位移的理论值和三维有限元结果非常接近.此外,该理论不限于具有双对称横截面的自然弯扭梁,同样可推广至具有一般横截面形状的情况.  相似文献   

5.
The refined equations of the free oscillations of a rod-strip, constructed previously in a first approximation by reducing the two-dimensional equations to one-dimensional equations by using trigonometric basis functions and satisfying the static boundary conditions on the boundary surfaces are analysed. These equations, the solutions of which are obtained for the case of hinge-supported end sections of the rod, are split into two independent systems of equations. The first of these describe non-classical fixed longitudinal-transverse forms of free oscillations, which are accompanied by a distortion of the plane form of the cross section. It is shown that the oscillation frequencies corresponding to them depend considerably on Poisson's ratio and the modulus of elasticity in the transverse direction, while for a rod of average thickness for the same value of the frequency parameter (the tone) they may be considerably lower than the frequencies corresponding to the classical longitudinal forms of free oscillations, which are performed while preserving the plane form of the cross sections. The second system of equations describes transverse flexural-shear forms of free oscillations, whose frequencies decrease as the transverse shear modulus decreases. They are practically equivalent in quality and content to the similar equations of well-known versions of the refined theories, but, unlike them, when the number of the tone increases and the relative thickness parameter decreases they lead to the solutions of the classical theory of rods.  相似文献   

6.
For the sandwich plates and shells with transversally-soft core and carrier layers having on the outer contour of the reinforcing rod, for small deformations, and middle displacements we construct refined geometrically nonlinear theory. This theory allows to describe the process of the subcritical deformation and identify all possible buckling of carrier layers and reinforcing rods. It is based on the introduction as unknown contact forces at the points of interaction mating surface of the outer layers with core and carrier layers and a core with reinforcing rods at all points of the surface of their conjugation to the shell contour. To derive the basic equations of equilibrium, static boundary conditions for the shell and reinforcing rods, as well as conditions of the kinematic coupling of the carrier layers with a core, the carrier layers and a core with reinforcing rods we use previously proposed generalized Lagrange variational principle.  相似文献   

7.
A refined classical Kirchhoff–Love theory of thin shells with finite displacements and deformations is given that takes account of deformation in a transverse direction by introducing an additional unknown function to describe it. It is shown that the last of the three equilibrium equations for the moments obtained from the variational equation of the principle of virtual displacements serves to determine it. Constitutive relations are constructed for the internal forces and moments introduced into the treatment based on the introduction of the true Novoshilov stresses and strains into the discussion. The solution of problem of the static stability of a cylindrical shell made of a rubber-like incompressible material inflated by an internal pressure is given using the equations constructed. Chernykh's constitutive relations are used in its formulation.  相似文献   

8.
More-accurate equations describing the axisymmetric deformations of elastic, thin-walled elements (coatings) are derived using the asymptotic analysis of the solution to the first fundamental problem of the theory of elasticity for a layer. The notable difference distinguishing these relations from the classical, Kirchhoff-Love and Reissner-Timoshenko equations of flexure of plates, and their modifications /1/, is, that there are no concentrated forces at the edges of the stamp when the corresponding contact problems are solved. Moreover, the formulas obtained contain the equations of classical theory as a special case. The solutions obtained using various applied theories are compared with the corresponding solution obtained using the equations of the theory of elasticity, using the example of the axisymmetric contact problem of impressing a plane circular stamp into a layer lying on a Fuss-Winkler foundation. The characteristic parameters of the problem in question are computed by numerical methods.  相似文献   

9.
10.
We study asymptotic dynamics of a coupled system consisting of linearized 3D Navier–Stokes equations in a bounded domain and the classical (nonlinear) elastic plate equation for in‐plane motions on a flexible flat part of the boundary. The main novelty of the model is the assumption that the transversal displacements of the plate are negligible relative to in‐plane displacements. These kinds of models arise in the study of blood flows in large arteries. Our main result states the existence of a compact global attractor of finite dimension. Under some conditions this attractor is an exponentially attracting single point. We also show that the corresponding linearized system generates an exponentially stable C0‐semigroup. We do not assume any kind of mechanical damping in the plate component. Thus our results mean that dissipation of the energy in the fluid because of viscosity is sufficient to stabilize the system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
We prove the existence theorem for solutions of geometrically nonlinear boundary-value problems for elastic shallow isotropic homogeneous shells with free edges under shear model of S. P. Timoshenko. Research method consists in the reduction of the original system of equilibrium equations to a single nonlinear equation for the components of transverse shear deformations. The basis of this method are integral representations for the generalized displacements, containing an arbitrary holomorphic functions, which are determined by the boundary conditions involving the theory of one-dimensional singular integral equations.  相似文献   

12.
A stress recovery procedure is presented for non-linear and linearized problems, based on the determination of the forces at the mesh points using a stiffness matrix obtained by the finite element method for the Lagrange variational equation written in the initial configuration using an asymmetric Piola–Kirchhoff stress tensor. Vectors of the forces reduced to the mesh points are constructed using the displacements at the mesh points found by solving this equation and for the known stiffness matrices of the elements. On the other hand, these forces at the mesh points are defined in terms of unknown forces distributed over the surface of an element and given shape functions. As a result, a system of Fredholm integral equations of the first kind is obtained, the solution of which gives these distributed forces. The values of the Piola–Kirchhoff stress tensor of the first kind at the mesh points are determined using the values found for the distributed forces on the surfaces of the finite element mesh (including at the mesh points) using the Cauchy relations for the initial configuration. The linearized representation of this tensor enables all the derivatives of the increment in the strain vector with respect to the coordinates to be found without invoking the operation of differentiation. The particular features of the use of the stress recovery procedure are demonstrated for a plane problem in the non-linear theory of elasticity.  相似文献   

13.
The dynamic problems of fracture mechanics for composite materials with initial stresses are considered in the case of cracks moving at a constant rate along a straight line. In the continuum approximation, composite materials are modeled by orthotropic nonlinearly elastic bodies with an arbitrary form of the elastic potential. A three-dimensional linearized theory of elasticity is used. The complex potentials of plane and antiplane problems of the linearized theory are used for dynamic problems. Exact solutions for Modes I, II, and III in the case of moving cracks are obtained using the Keldysh-Sedov methods. Asymptotic formulas for stresses and displacements near the crack tip for Modes I, II, and III are presented. The basic mechanical effects are analyzed with respect to the problems considered.  相似文献   

14.
The equations of linear elasticity for rotationally symmetric deformations are expanded using a small parameter related to the thickness to radius of curvature ratio of the shell to obtain the classical thin shell equations of conical shells as a first approximation. These classical equations with variable coefficients permit further asymptotic expansions in the cases of steep as well as shallow cones, yielding systems of equations with constant coefficients. Solutions of these equations are used to compute the influence coefficients relating edge loads and edge displacements.  相似文献   

15.
Based on linearized equations of the theory of elastic stability of straight composite bars with a low shear rigidity, which are constructed using the consistent geometrically nonlinear equations of elasticity theory for small deformations and arbitrary displacements and a kinematic model of Timoshenko type, exact analytical solutions of nonclassical stability problems are obtained for a bar subjected to axial compression and torsion for various modes of end fixation. It is shown that the problem of direct determination of the critical parameter of the compressive load at a given torque parameter leads to transcendental characteristic equations that are solvable only if bar ends have cylindrical hinges. At the same time, we succeeded in obtaining solutions to these equations in terms of wave formation parameters of the bar; these parameters, in turn, enabled us to find the parameter of the critical load at any boundary conditions. Also, an algorithm for numerical solution of the problems stated is proposed, which is based on reducing the problems to systems of integroalgebraic equations with Volterra-type operators and on solving these equations by the method of mechanical quadratures (finite sums). It is demonstrated that such numerical solutions exist only for certain ranges of parameters of the bar and of the parameter of torque. In the general case, they can not be obtained by the numerical method used. It is also shown that the well-known solutions of the stability problem for a bar subjected to torsion or to compression with torsion are in correct. Translated from Mekhanika Kompozitnykh Materialov, Vol. 45, No. 2, pp. 167–200, March–April, 2009.  相似文献   

16.
A generalized linearized theory of thermoviscoelasticity, including the effect of heat formation, is presented. The linearized equations of motion, of state, and for the energy are given together with the linearized boundary conditions for large initial deformations. Attention is drawn to the fact that the equations which have been derived can be used for the solution of problems concerning the stability of viscoelastic bodies, the propagation of waves in viscoelastic materials which are subjected to deformation, and problems concerning the stress-deformed state of viscoelastic elements. The problem of the propagation of plane waves in viscoelastic materials which are subjected to deformation is considered as an example.Institute of Mechanics, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Mekhanika Polimerov, No. 2, pp. 214–221, March–April, 1972.  相似文献   

17.
Exact analytical solutions of problems on the static and dynamic forms of the loss of stability of a ring, under the action of a linear torque constant along the perimeter, are found using the consistent equations of the theory of plane curvilinear rods constructed earlier taking account of transverse shears. Two forms of torsion of the ring are examined: the external forces creating a torque remain in the plane of a cross-section of the ring in its initial undeformed state (“dead” forces, case 1) or in its deformed state (“follower” forces, case 2). It is shown that, in the second case, the solution of the static instability problem found is practically identical to the solution of the problem corresponding to the dynamic formulation and is reduced to an examination of the oscillations about the static equilibrium position. In the case of both forms of loading, loss of stability of the ring occurs without deformation of its axial line, with it bending predominantly in the plane of the ring accompanied by a slight distortion. It is established that a study of the forms of loss of stability of the ring for the type of loading considered is only possible using the equations constructed, taking account of transverse shear.  相似文献   

18.
An elastic bounded anisotropic solid with an elastic inclusion is considered. An oscillating source acts on part of the boundary of the solid and excites oscillations in it. Zero displacements are specified on the other part of the solid and zero forces on the remaining part. A variation in the shape of the surface of the solid and of the inclusion of continuous curvature is introduced and the problem of the theory of elasticity with respect to this variation is linearized. An algorithm for constructing integral representations for such linearized problems is described. The limiting properties of the linearized operators are investigated and special boundary integral equations of the anisotropic theory of elasticity are formulated, which relate the variations of the boundary strain and stress fields with the variations in the shape of the boundary surface. Examples are given of applications of these equations in geometrical inverse problems in which it is required to establish the unknown part of the body boundary or the shape of an elastic inclusion on the basis of information on the wave field on the part of the body surface accessible for observation.  相似文献   

19.
We construct finite element subspaces of the space of symmetric tensors with square-integrable divergence on a three-dimensional domain. These spaces can be used to approximate the stress field in the classical Hellinger-Reissner mixed formulation of the elasticty equations, when standard discontinuous finite element spaces are used to approximate the displacement field. These finite element spaces are defined with respect to an arbitrary simplicial triangulation of the domain, and there is one for each positive value of the polynomial degree used for the displacements. For each degree, these provide a stable finite element discretization. The construction of the spaces is closely tied to discretizations of the elasticity complex and can be viewed as the three-dimensional analogue of the triangular element family for plane elasticity previously proposed by Arnold and Winther.

  相似文献   


20.
有限变形弹性杆中三种非线性弥散波   总被引:4,自引:2,他引:2  
在一维弹性细杆拉压、扭转和弯曲波的经典线性理论基础上,分别计入有限变形和弥散效应,借助Hamilton变分原理,由统一的方法导出了3种非线性弥散波的演化方程.对3种演化方程进行了定性分析.结果表明,这些方程在相平面上存在同宿轨道或异宿轨道,分别相应于孤波解或冲击波解.根据齐次平衡原理,用Jacobi椭圆函数展开对这些演化方程进行了求解,在一定的条件下它们均可能存在孤立波解或冲击波解,这与方程的定性分析完全一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号