首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local search algorithms play an essential role in solving large-scale combinatorial optimization problems. Traditionally, the local search procedure is guided mainly by the objective function of the problem. Hence, the greedy improvement paradigm poses the potential threat of prematurely getting trapped in low quality attraction basins. In this study, we intend to utilize the information extracted from the relaxed problem, to enhance the performance of the local search process. Considering the Lin-Kernighan-based local search (LK-search) for the p-median problem as a case study, we propose the Lagrangian relaxation Assisted Neighborhood Search (LANS). In the proposed algorithm, two new mechanisms, namely the neighborhood reduction and the redundancy detection, are developed. The two mechanisms exploit the information gathered from the relaxed problem, to avoid the search from prematurely targeting low quality directions, and to cut off the non-promising searching procedure, respectively. Extensive numerical results over the benchmark instances demonstrate that LANS performs favorably to LK-search, which is among the state-of-the-art local search algorithms for the p-median problem. Furthermore, by embedding LANS into other heuristics, the best known upper bounds over several benchmark instances could be updated. Besides, run-time distribution analysis is also employed to investigate the reason why LANS works. The findings of this study confirm that the idea of improving local search by leveraging the information induced from relaxed problem is feasible and practical, and might be generalized to a broad class of combinatorial optimization problems.  相似文献   

2.
The performance of the genetic algorithm (GA) for the graph partitioning problem (GPP) is investigated by comparison with standard heuristics on well-known benchmark graphs. In general, there is a case where a practical performance of a conventional genetic approach, which performs only simple operations without a local search strategy, is not sufficient. However, it is known that a combination of GA and local search can produce better solutions. From this practice, we incorporate a simple local search algorithm into the GA. In particular, the search ability of the GA is compared with standard heuristics such as multistart local search and simulated annealing, which use the same neighborhood structure of the simple local search, for solving the GPP. Experimental results show that the GA performs better than its competitors.  相似文献   

3.
We present a new general variable neighborhood search approach for the uncapacitated single allocation p-hub median problem in networks. This NP hard problem is concerned with locating hub facilities in order to minimize the traffic between all origin-destination pairs. We use three neighborhoods and efficiently update data structures for calculating new total flow in the network. In addition to the usual sequential strategy, a new nested strategy is proposed in designing a deterministic variable neighborhood descent local search. Our experimentation shows that general variable neighborhood search based heuristics outperform the best-known heuristics in terms of solution quality and computational effort. Moreover, we improve the best-known objective values for some large Australia Post and PlanetLab instances. Results with the new nested variable neighborhood descent show the best performance in solving very large test instances.  相似文献   

4.
In the paper we consider a problem of packing rectangular blocks on a plane, which is known as Block Packing Problem (BPP). This problem is a central issue of the modern VLSI chips design methods. Basing on a new interpretation of the Sequence-Pair representation of the packing solution-space, which is based on Complementary Mirror Constraint Graphs (CMCG), we develop the efficient method of neighborhood exploration. This method might be able to improve the efficiency of other neighborhood-based search methods, such as simulated annealing or tabu search, as well as, to construct efficient heuristics. We illustrate application of the developed method by constructing a heuristic algorithm for solving BPP and comparing its efficiency and effectiveness to the algorithms commonly used so far.  相似文献   

5.
In this paper, we propose a smoothing algorithm for solving the monotone symmetric cone complementarity problems (SCCP for short) with a nonmonotone line search. We show that the nonmonotone algorithm is globally convergent under an assumption that the solution set of the problem concerned is nonempty. Such an assumption is weaker than those given in most existing algorithms for solving optimization problems over symmetric cones. We also prove that the solution obtained by the algorithm is a maximally complementary solution to the monotone SCCP under some assumptions. This work was supported by National Natural Science Foundation of China (Grant Nos. 10571134, 10671010) and Natural Science Foundation of Tianjin (Grant No. 07JCYBJC05200)  相似文献   

6.
Rollout Algorithms for Stochastic Scheduling Problems   总被引:8,自引:0,他引:8  
Stochastic scheduling problems are difficult stochastic control problems with combinatorial decision spaces. In this paper we focus on a class of stochastic scheduling problems, the quiz problem and its variations. We discuss the use of heuristics for their solution, and we propose rollout algorithms based on these heuristics which approximate the stochastic dynamic programming algorithm. We show how the rollout algorithms can be implemented efficiently, with considerable savings in computation over optimal algorithms. We delineate circumstances under which the rollout algorithms are guaranteed to perform better than the heuristics on which they are based. We also show computational results which suggest that the performance of the rollout policies is near-optimal, and is substantially better than the performance of their underlying heuristics.  相似文献   

7.
We present a variable neighborhood search approach for solving the one-commodity pickup-and-delivery travelling salesman problem. It is characterized by a set of customers such that each of the customers either supplies (pickup customers) or demands (delivery customers) a given amount of a single product, and by a vehicle, whose given capacity must not be exceeded, that starts at the depot and must visit each customer only once. The objective is to minimize the total length of the tour. Thus, the considered problem includes checking the existence of a feasible travelling salesman’s tour and designing the optimal travelling salesman’s tour, which are both NP-hard problems. We adapt a collection of neighborhood structures, k-opt, double-bridge and insertion operators mainly used for solving the classical travelling salesman problem. A binary indexed tree data structure is used, which enables efficient feasibility checking and updating of solutions in these neighborhoods. Our extensive computational analysis shows that the proposed variable neighborhood search based heuristics outperforms the best-known algorithms in terms of both the solution quality and computational efforts. Moreover, we improve the best-known solutions of all benchmark instances from the literature (with 200 to 500 customers). We are also able to solve instances with up to 1000 customers.  相似文献   

8.
This paper presents variable neighborhood search (VNS) for the problem of finding the global minimum of a nonconvex function. The variable neighborhood search, which changes systematically neighborhood structures in the search for finding a better solution, is used to guide a set of standard improvement heuristics. This algorithm was tested on some standard test functions, and successful results were obtained. Its performance was compared with the other algorithms, and observed to be better.  相似文献   

9.
The capacitated minimum spanning tree (CMST) problem is to find a minimum cost spanning tree in a network where nodes have specified demands, with an additional capacity constraints on the subtrees incident to a given source node s. The capacitated minimum spanning tree problem arises as an important subproblem in many telecommunication network design problems. In a recent paper, Ahuja et al. (Math. Program. 91 (2001) 71) proposed two very large-scale neighborhood search algorithms for the capacitated minimum spanning tree problem. Their first node-based neighborhood structure is obtained by performing multi-exchanges involving several trees where each tree contributes a single node. Their second tree-based neighborhood structure is obtained by performing multi-exchanges where each tree contributes a subtree. The computational investigations found that node-based multi-exchange neighborhood gives the best performance for the homogenous demand case (when all nodes have the same demand), and the tree-based multi-exchange neighborhood gives the best performance for the heterogeneous demand case (when nodes may have different demands). In this paper, we propose a composite neighborhood structure that subsumes both the node-based and tree-based neighborhoods, and outperforms both the previous neighborhood search algorithms for solving the capacitated minimum spanning tree problem on standard benchmark instances. We also develop improved dynamic programming based exact algorithms for searching the composite neighborhood.  相似文献   

10.
This paper focuses on branching strategies that are involved in branch and bound algorithms when solving multi-objective optimization problems. The choice of the branching variable at each node of the search tree constitutes indeed an important component of these algorithms. In this work we focus on multi-objective knapsack problems. In the literature, branching heuristics used for these problems are static, i.e., the order on the variables is determined prior to the execution. This study investigates the benefit of defining more sophisticated branching strategies. We first analyze and compare a representative set of classic branching heuristics and conclude that none can be identified as the best overall heuristic. Using an oracle, we highlight that combining branching heuristics within the same branch and bound algorithm leads to considerably reduced search trees but induces high computational costs. Based on learning adaptive techniques, we propose then dynamic adaptive branching strategies that are able to select the suitable heuristic to apply at each node of the search tree. Experiments are conducted on the bi-objective 0/1 unidimensional knapsack problem.  相似文献   

11.
Given a set of commodities to be routed over a network, the network design problem with relays involves selecting a route for each commodity and determining the location of relays where the commodities must be reprocessed at certain distance intervals. We propose a hybrid approach based on variable neighborhood search. The variable neighborhood algorithm searches for the route for each commodity and the optimal relay locations for a given set of routes are determined by an implicit enumeration algorithm. We show that dynamic programming can be used to determine the optimal relay locations for a single commodity. Dynamic programming is embedded into the implicit enumeration algorithm to solve the relay location problem optimally for multiple commodities. The special structure of the problem is leveraged for computational efficiency. In the variable neighborhood search algorithm, the routes of the current solution are perturbed and reconstructed to generate neighbor solutions using random and greedy construction heuristics. Computational experiments on three sets of problems (80 instances) show that the variable neighborhood search algorithm with optimal relay allocations outperforms all existing algorithms in the literature.  相似文献   

12.
本文在传统资源受限项目调度问题(resource-constrained project scheduling problem, RCPSP)中引入资源转移时间,为有效获得问题的最优解,采用资源流编码方式表示可行解,建立了带有资源转移时间的RCPSP资源流优化模型,目标为最小化项目工期。根据问题特征设计了改进的资源流重构邻域算子,分别设计了改进的禁忌搜索算法和贪心随机自适应禁忌搜索算法求解模型。数据实验结果表明,相较于现有文献中的方法,所提两种算法均可针对更多的项目实例求得最优解,并且得到最优解的时间更短,求解效率更高。此外,分析了算法在求解具有不同特征的项目实例时的性能,所得结果为项目经理结合项目特征评价算法适用性提供了指导。  相似文献   

13.
This paper discusses neighborhood search algorithms where the size of the neighborhood is very large” with respect to the size of the input data. We concentrate on such a very large scale neighborhood (VLSN) search technique based on compounding independent moves (CIM) such as 2-opts, swaps, and insertions. We present a systematic way of creating and searching CIM neighborhoods for routing problems with side constraints. For such problems, the exact search of the CIM neighborhood becomes NP-hard. We introduce a multi-label shortest path algorithm for searching these neighborhoods heuristically. Results of a computational study on the vehicle routing problem with capacity and distance restrictions shows that CIM algorithms are very competitive approaches for solving vehicle routing problems. Overall, the solutions generated by the CIM algorithm have the best performance among the current solution methodologies in terms of percentage deviation from the best-known solutions for large-scale capacitated VRP instances.  相似文献   

14.
In this paper, we deal with the sequencing and routing problem of order pickers in conventional multi-parallel-aisle warehouse systems. For this NP-hard Steiner travelling salesman problem (TSP), exact algorithms only exist for warehouses with at most three cross aisles, while for other warehouse types literature provides a selection of dedicated construction heuristics. We evaluate to what extent reformulating and solving the problem as a classical TSP leads to performance improvements compared to existing dedicated heuristics. We report average savings in route distance of up to 47% when using the LKH (Lin–Kernighan–Helsgaun) TSP heuristic. Additionally, we examine if combining problem-specific solution concepts from dedicated heuristics with high-quality local search features could be useful. Lastly, we verify whether the sophistication of ‘state-of-the-art’ local search heuristics is necessary for routing order pickers in warehouses, or whether a subset of features suffices to generate high-quality solutions.  相似文献   

15.
For hard optimization problems, it is difficult to design heuristic algorithms which exhibit uniformly superior performance for all problem instances. As a result it becomes necessary to tailor the algorithms based on the problem instance. In this paper, we introduce the use of a cooperative problem solving team of heuristics that evolves algorithms for a given problem instance. The efficacy of this method is examined by solving six difficult instances of a bicriteria sparse multiple knapsack problem. Results indicate that such tailored algorithms uniformly improve solutions as compared to using predesigned heuristic algorithms.  相似文献   

16.
This paper proposes two parallel algorithms which are improved by heuristics for a bi-objective flowshop scheduling problem with sequence-dependent setup times in a just-in-time environment. In the proposed algorithms, the population will be decomposed into the several sub-populations in parallel. Multiple objectives are combined with min–max method then each sub-population evolves separately in order to obtain a good approximation of the Pareto-front. After unifying the obtained results, we propose a variable neighborhood algorithm and a hybrid variable neighborhood search/tabu search algorithm to improve the Pareto-front. The non-dominated sets obtained from our proposed algorithms, a genetic local search and restarted iterated Pareto greedy algorithm are compared. It is found that most of the solutions in the net non-dominated front are yielded by our proposed algorithms.  相似文献   

17.
This paper introduces a new approach to applying hyper-heuristic algorithms to solve combinatorial problems with less effort, taking into account the modelling and algorithm construction process. We propose a unified encoding of a solution and a set of low level heuristics which are domain-independent and which change the solution itself. This approach enables us to address NP-hard problems and generate good approximate solutions in a reasonable time without a large amount of additional work required to tailor search methodologies for the problem in hand. In particular, we focused on solving DNA sequencing by hybrydization with errors, which is known to be strongly NP-hard. The approach was extensively tested by solving multiple instances of well-known combinatorial problems and compared with results generated by meta heuristics that have been tailored for specific problem domains.  相似文献   

18.
This paper presents an hybrid search method for solving on-line optimization problems that are modelled using the vcspValued Constraint Satisfaction Problems framework. To each constraint is associated a valuation representing the “cost to pay” when this constraint will be violated by a solution. Our method (VNS/LDS+CP) uses principles of VNS (Variable Neighborhood Search) and combines a partial tree search (Limited Discrepancy Search) with Constraint Propagation in order to compute local optima. Experiments on the CELAR benchmarks demonstrate significant improvements on other competing methods: LNS/CP/GR [Lobjois, L., Lemaitre, M., Verfaillie, G., 2000. Large neighbourhood search using constraint propagation and greedy reconstruction for valued csp resolution. In: Proceedings of the ECAI2000 Workshop on Modelling and Solving Problems with Constraints], another hybrid method using vcsps, and two standard versions of Simulated-Annealing [Li, Y.H., 1997. Directed annealing search in constraint satisfaction and optimization. Ph.D. thesis, Imperial College of Science, Department of Computing]: Quick and Medium. Moreover, VNS/LDS+CP clearly satisfies the key properties of anytime algorithms. Finally, VNS/LDS+CP has been successfully applied to a real-life on-line resource allocation problem in computer networks.  相似文献   

19.
In this paper we study search heuristics for box decomposition methods that solve problems such as global optimization, minimax optimization, or quantified constraint solving. For this we unify these methods under a branch-and-bound framework, and develop a model that is more convenient for studying heuristics for such algorithms than the traditional models from Artificial Intelligence. We use the result to prove various theorems about heuristics and apply the outcome to the box decomposition methods under consideration. We support the findings with timings for the method of quantified constraint solving developed by the author.  相似文献   

20.
In this paper, we study the application of non-monotone derivative-free optimization algorithms to wireless local area networks (WLAN) planning, which can be modeled as an unconstrained minimization problem. We wish to determine the access point (AP) positions that maximize coverage in order to provide connectivity to static and mobile users. As the objective function of the optimization model is not everywhere differentiable, previous research has discarded gradient methods and employed heuristics such as neighborhood search (NS) and simulated annealing (SA). In this paper, we show that the model fulfills the conditions required by recently proposed non-monotone derivative-free (DF) algorithms. Unlike SA, DF has guaranteed convergence. The numerical tests reveal that a tailored DF implementation (termed “zone search”) outperforms NS and SA. A collaboration between U. of Vigo, Spain and USB, Venezuela.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号