首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This letter studies symmetric and symplectic exponential integrators when applied to numerically computing nonlinear Hamiltonian systems. We first establish the symmetry and symplecticity conditions of exponential integrators and then show that these conditions are extensions of the symmetry and symplecticity conditions of Runge–Kutta methods. Based on these conditions, some symmetric and symplectic exponential integrators up to order four are derived. Two numerical experiments are carried out and the results demonstrate the remarkable numerical behaviour of the new exponential integrators in comparison with some symmetric and symplectic Runge–Kutta methods in the literature.  相似文献   

2.
We consider Magnus integrators to solve linear-quadratic NN-player differential games. These problems require to solve, backward in time, non-autonomous matrix Riccati differential equations which are coupled with the linear differential equations for the dynamic state of the game, to be integrated forward in time. We analyze different Magnus integrators which can provide either analytical or numerical approximations to the equations. They can be considered as time-averaging methods and frequently are used as exponential integrators. We show that they preserve some of the most relevant qualitative properties of the solution for the matrix Riccati differential equations as well as for the remaining equations. The analytical approximations allow us to study the problem in terms of the parameters involved. Some numerical examples are also considered which show that exponential methods are, in general, superior to standard methods.  相似文献   

3.
This paper proposes an accurate dense output formula for exponential integrators. The computation of matrix exponential function is a vital step in implementing exponential integrators. By scrutinizing the computational process of matrix exponentials using the scaling and squaring method, valuable intermediate results in this process are identified and then used to establish a dense output formula. Efficient computation of dense outputs by the proposed formula enables time integration methods to set their simulation step sizes more flexibly. The efficacy of the proposed formula is verified through numerical examples from the power engineering field.  相似文献   

4.
In this article, we derive and study symmetric exponential integrators. Numerical experiments are performed for the cubic Schrödinger equation and comparisons with classical exponential integrators and other geometric methods are also given. Some of the proposed methods preserve the L 2-norm and/or the energy of the system.  相似文献   

5.
作为飞机环控系统与主发动机起动的气源,以目前广泛应用的带负载压气机结构APU(Auxiliary Power Unit)为研究对象,进行引气特性计算模型与计算方法研究。首先介绍了APU结构与引气工作特点,然后分析了建模时喘振控制阀SCV(Surge Control Valve)控制方法与APU共同工作机理,最后采用部件法建立了该类型APU引气计算数学模型。以某型APU为对象进行数值仿真并与实际试车数据比较,计算误差小于3%,表明所采用的建模方法是正确的,所建立的模型能够满足工程需求。   相似文献   

6.
In this paper, we present a variable step size implementation of exponential Rosenbrock-type methods of orders 2, 3 and 4. These integrators require the evaluation of exponential and related functions of the Jacobian matrix. To this aim, the Real Leja Points Method is used. It is shown that the properties of this method combine well with the particular requirements of Rosenbrock-type integrators. We verify our implementation with some numerical experiments in MATLAB, where we solve semilinear parabolic PDEs in one and two space dimensions. We further present some numerical experiments in FORTRAN, where we compare our method with other methods from literature. We find a great potential of our method for non-normal matrices. Such matrices typically arise in parabolic problems with large advection in combination with moderate diffusion and mildly stiff reactions.  相似文献   

7.
In recent years, there has been a resurgence in the construction and implementation of exponential integrators, which are numerical methods specifically designed for the numerical solution of spatially discretized semi-linear partial differential equations. Exponential integrators use the matrix exponential and related matrix functions within the formulation of the numerical method. The scaling and squaring method is the most widely used method for computing the matrix exponential. The aim of this paper is to discuss the efficient and accurate evaluation of the matrix exponential and related matrix functions using a scaling and modified squaring method.  相似文献   

8.
The implementation of exponential integrators requires the action of the matrix exponential and related functions of a possibly large matrix. There are various methods in the literature for carrying out this task. In this paper we describe a new implementation of a method based on interpolation at Leja points. We numerically compare this method with other codes from the literature. As we are interested in applications to exponential integrators we choose the test examples from spatial discretization of time dependent partial differential equations in two and three space dimensions. The test matrices thus have large eigenvalues and can be nonnormal.  相似文献   

9.
Symplectic integration of autonomous Hamiltonian systems is a well-known field of study in geometric numerical integration, but for non-autonomous systems the situation is less clear, since symplectic structure requires an even number of dimensions. We show that one possible extension of symplectic methods in the autonomous setting to the non-autonomous setting is obtained by using canonical transformations. Many existing methods fit into this framework. We also perform experiments which indicate that for exponential integrators, the canonical and symmetric properties are important for good long time behaviour. In particular, the theoretical and numerical results support the well documented fact from the literature that exponential integrators for non-autonomous linear problems have superior accuracy compared to general ODE schemes.  相似文献   

10.
In this paper, we consider a class of explicit exponential integrators that includes as special cases the explicit exponential Runge–Kutta and exponential Adams–Bashforth methods. The additional freedom in the choice of the numerical schemes allows, in an easy manner, the construction of methods of arbitrarily high order with good stability properties. We provide a convergence analysis for abstract evolution equations in Banach spaces including semilinear parabolic initial-boundary value problems and spatial discretizations thereof. From this analysis, we deduce order conditions which in turn form the basis for the construction of new schemes. Our convergence results are illustrated by numerical examples. AMS subject classification (2000) 65L05, 65L06, 65M12, 65J10  相似文献   

11.
Rational generalizations of multistep schemes, where the linear stiff part of a given problem is treated by an A-stable rational approximation, have been proposed by several authors, but a reasonable convergence analysis for stiff problems has not been provided so far. In this paper we directly relate this approach to exponential multistep methods, a subclass of the increasingly popular class of exponential integrators. This natural, but new interpretation of rational multistep methods enables us to prove a convergence result of the same quality as for the exponential version. In particular, we consider schemes of rational Adams type based on A-acceptable Padé approximations to the matrix exponential. A numerical example is also provided.  相似文献   

12.
The aim of this paper is to analyze efficient numerical methods for time integration of European option pricing models. When spatial discretization is adopted, the resulting problem consists of an ordinary differential equation that can be approximated by means of exponential Runge–Kutta integrators, where the matrix‐valued functions are computed by the so‐called shift‐and‐invert Krylov method. To our knowledge, the use of this numerical approach is innovative in the framework of option pricing, and it reveals to be very attractive and efficient to solve the problem at hand. In this respect, we propose some a posteriori estimates for the error in the shift‐and‐invert approximation of the core‐functions arising in exponential integrators. The effectiveness of these error bounds is tested on several examples of interest. They can be adopted as a convenient stopping criterion for implementing the exponential Runge–Kutta algorithm in order to perform time integration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we develop an algorithm in which the block shift-and-invert Krylov subspace method can be employed for approximating the linear combination of the matrix exponential and related exponential-type functions. Such evaluation plays a major role in a class of numerical methods known as exponential integrators. We derive a low-dimensional matrix exponential to approximate the objective function based on the block shift-and-invert Krylov subspace methods. We obtain the error expansion of the approximation, and show that the variants of its first term can be used as reliable a posteriori error estimates and correctors. Numerical experiments illustrate that the error estimates are efficient and the proposed algorithm is worthy of further study.  相似文献   

14.
In this paper we use the theory of Faber polynomials for solving N‐dimensional linear initial value problems. In particular, we use Faber polynomials to approximate the evolution operator creating the so‐called exponential integrators. We also provide a consistence and convergence analysis. Some tests where we compare our methods with some Krylov exponential integrators are finally shown. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
New modified open Newton Cotes integrators are introduced in this paper. For the new proposed integrators the connection between these new algorithms, differential methods and symplectic integrators is studied. Much research has been done on one step symplectic integrators and several of them have obtained based on symplectic geometry. However, the research on multistep symplectic integrators is very poor. Zhu et al. [1] studied the well known open Newton Cotes differential methods and they presented them as multilayer symplectic integrators. Chiou and Wu [2] studied the development of multistep symplectic integrators based on the open Newton Cotes integration methods. In this paper we introduce a new open modified numerical method of Newton Cotes type and we present it as symplectic multilayer structure. The new obtained symplectic schemes are applied for the solution of Hamilton’s equations of motion which are linear in position and momentum. An important remark is that the Hamiltonian energy of the system remains almost constant as integration proceeds. We have applied also efficiently the new proposed method to a nonlinear orbital problem and an almost periodic orbital problem.  相似文献   

16.
Inventory control systems typically require the frequent updating of forecasts for many different products. In addition to point predictions, interval forecasts are needed to set appropriate levels of safety stock. The series considered in this paper are characterised by high volatility and skewness, which are both time-varying. These features motivate the consideration of forecasting methods that are robust with regard to distributional assumptions. The widespread use of exponential smoothing for point forecasting in inventory control motivates the development of the approach for interval forecasting. In this paper, we construct interval forecasts from quantile predictions generated using exponentially weighted quantile regression. The approach amounts to exponential smoothing of the cumulative distribution function, and can be viewed as an extension of generalised exponential smoothing to quantile forecasting. Empirical results are encouraging, with improvements over traditional methods being particularly apparent when the approach is used as the basis for robust point forecasting.  相似文献   

17.
We compare six different categories of numerical methods for the evaluation of functions of the matrix exponential. These functions are required for exponential integrators, and are not straightforward to evaluate because they are highly susceptible to rounding errors when the matrix has small eigenvalues. The comparison takes into account both accuracy and computational time. A scaling and squaring algorithm and a diagonalisation algorithm are both found to be efficient.  相似文献   

18.
Wang  Bin  Wu  Xinyuan 《BIT Numerical Mathematics》2021,61(3):977-1004

This paper presents a long-term analysis of one-stage extended Runge–Kutta–Nyström (ERKN) integrators for highly oscillatory Hamiltonian systems. We study the long-time numerical energy conservation not only for symmetric integrators but also for symplectic integrators. In the analysis, we neither assume symplecticity for symmetric methods, nor assume symmetry for symplectic methods. It turns out that these both types of integrators have a near conservation of the total and oscillatory energy over a long term. To prove the result for explicit integrators, a relationship between ERKN integrators and trigonometric integrators is established. For the long-term analysis of implicit integrators, the above approach does not work anymore and we use the technology of modulated Fourier expansion. By taking some adaptations of this technology for implicit methods, we derive the modulated Fourier expansion and show the near energy conservation.

  相似文献   

19.
In this paper, structure-preserving time-integrators for rigid body-type mechanical systems are derived from a discrete Hamilton–Pontryagin variational principle. From this principle, one can derive a novel class of variational partitioned Runge–Kutta methods on Lie groups. Included among these integrators are generalizations of symplectic Euler and Störmer–Verlet integrators from flat spaces to Lie groups. Because of their variational design, these integrators preserve a discrete momentum map (in the presence of symmetry) and a symplectic form. In a companion paper, we perform a numerical analysis of these methods and report on numerical experiments on the rigid body and chaotic dynamics of an underwater vehicle. The numerics reveal that these variational integrators possess structure-preserving properties that methods designed to preserve momentum (using the coadjoint action of the Lie group) and energy (for example, by projection) lack.  相似文献   

20.
We consider the approximation of operator functions in resolvent Krylov subspaces. Besides many other applications, such approximations are currently of high interest for the approximation of φ-functions that arise in the numerical solution of evolution equations by exponential integrators. It is well known that Krylov subspace methods for matrix functions without exponential decay show superlinear convergence behaviour if the number of steps is larger than the norm of the operator. Thus, Krylov approximations may fail to converge for unbounded operators. In this paper, we analyse a rational Krylov subspace method which converges not only for finite element or finite difference approximations to differential operators but even for abstract, unbounded operators whose field of values lies in the left half plane. In contrast to standard Krylov methods, the convergence will be independent of the norm of the discretised operator and thus of the spatial discretisation. We will discuss efficient implementations for finite element discretisations and illustrate our analysis with numerical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号