
Journal of Applied Analysis and Computation Website:http://jaac-online.com/

Volume 7, Number 4, November 2017, 1402–1416 DOI:10.11948/2017085

APPROXIMATION OF THE LINEAR
COMBINATION OF ϕ-FUNCTIONS USING
THE BLOCK SHIFT-AND-INVERT KRYLOV
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Abstract In this paper, we develop an algorithm in which the block shift-
and-invert Krylov subspace method can be employed for approximating the
linear combination of the matrix exponential and related exponential-type
functions. Such evaluation plays a major role in a class of numerical meth-
ods known as exponential integrators. We derive a low-dimensional matrix
exponential to approximate the objective function based on the block shift-
and-invert Krylov subspace methods. We obtain the error expansion of the
approximation, and show that the variants of its first term can be used as
reliable a posteriori error estimates and correctors. Numerical experiments
illustrate that the error estimates are efficient and the proposed algorithm is
worthy of further study.
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1. Introduction

In this paper, we are concerned with numerical methods for approximating the
linear combination of the action of exponential-type functions of the type

ϕ0(A)b0 + ϕ1(A)b1 + ϕ2(A)b2 + · · ·+ ϕp(A)bp, (1.1)

where A ∈ Rn×n usually arises from the discretization of unbounded sectorial op-
erators and bi ∈ Rn for 0 ≤ i ≤ p. These ϕj-functions are defined as

ϕ0(z) = ez, ϕj(z) =

∫ 1

0

e(1−θ)z θj−1

(j − 1)!
dθ, j ≥ 1, (1.2)
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which satisfy the recursive relation

ϕj(z) = zϕj+1(z) +
1

j!
, j ≥ 0. (1.3)

Such problems play a key role in a class of numerical methods called exponential
integrators for solving the autonomous semi-linear problems of the form

y′(t) = Ay(t) +N(y(t)), y(t0) = y0. (1.4)

According to the variation-of-constants formula, the exact solution of (1.4) at time

tn+1 = tn + hn, n = 0, 1, · · · ,

can be denoted as

y(tn + hn) = eAhny(tn) + hn

∫ 1

0

eAhn(1−s)N
(
y(tn + shn)

)
ds. (1.5)

Then, the exponential integrators can be constructed by approximating the nonlin-
ear terms N

(
y(tn + shn)

)
in (1.5) by an interpolating polynomial, which involves

the linear combination of matrix-vector products of type (1.1). A full overview of
this topic can be found in [19,24].

As mentioned above, the efficient computation of the matrix exponential and
related functions of matrices acting on certain vectors is the core of exponential
integrators. In the past few years, many methods have been proposed for computing
such functions of matrices; see, e.g., [14, 33]. For a comprehensive review of these
techniques, we refer to the review [25] and the recent book [20].

In many applications, the matrix A is large and sparse so that it is prohibitive
to directly compute ϕj(A) and then form the product with vector bj . In this case
Krylov subspace methods are often used and significantly reduce computational
cost; see, e.g., [5, 8, 18, 29, 31] and the references given therein. In this setting, our
main interest is the case of ill conditioned matrices A with a large norm typically
arising from the space discretization of stiff time-dependent parabolic PDEs. The
widely used standard Krylov subspace methods often turn out to be inefficient for
this type of matrices because of slow convergence and large memory requirement.
Two popular strategies are presented to overcome this disadvantage. The first one is
the restarted Krylov subspace methods [10,12,36]. However, these methods may s-
low down the convergence speed and even diverge in some cases. The other approach
is to apply rational Krylov subspace methods to approximate the object functions;
see, e.g., [11, 16,23, 27]. One such method is to use the well-known shift-and-invert
(SI) Krylov subspace methods, which has been investigated independently in [27]
and [11] for the computation of the matrix exponential. Further application and
analysis can be found in [6, 9, 28, 38]. It has been proved in [13, 15] that the SI
Krylov subspace methods as a preconditioning technique for ϕk-functions (k ≥ 0)
can obtain grid-independent convergence under some reasonable assumptions and
accelerate the convergence of the standard Krylov subspace method.

The aim of this paper is to describe how a block version of Eshof and Hochbruck
[11] can be employed for the linear combinations of the action of ϕ-functions of the
form (1.1). We also provide some reliable a posteriori estimates and effective cor-
rected schemes from a practical viewpoint. We are not here to thoroughly explore all
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of the numerical analysis questions associated with the proposed algorithm. How-
ever, typical numerical experiments exhibit that the proposed algorithm has faster
convergence speed and the error estimates can capture correctly the characteristics
of the true error, meaning it is worthy of further study.

This paper is organized as follows. In Section 2 we first review some useful results
to be used, and then introduce the block SI Krylov subspace algorithm. Section
3 present the exact error expansion, which is then exploited to produce reliable a
posteriori error estimates and some slightly more accurate corrected schemes. In
Section 4 we present some numerical experiments to demonstrate the effectiveness of
the a posteriori error estimates and illustrate the benefits of our algorithm. Finally,
some concluding remarks are given in Section 5.

Throughout the paper, ei denotes the i-th coordinate vector with appropriate
size. Let I be the identity and 0 be the zero matrix or vector whose dimension are
clear from the context. Let Ei be an mp×p matrix which consists of the (i−1)p+1-
th to the ip-th columns of the mp ×mp identity matrix. ‖ · ‖ always denotes the
vector 2-norm or its induced matrix norm. Standard MATLAB notations are used
whenever necessary.

2. The block shift-and-invert (SI) Krylov subspace
approximation to (1.1)

We start by recalling a useful result to be used in this section. In [2], Al-Mohy and
Higham observed that the representation (1.1) can be represented exactly in terms
of a single exponential of an (n+ p)× (n+ p) matrix, i.e.,

p∑
k=0

ϕk(A)bk = [In, 0]eÃ

 b0

ep

 , (2.1)

where Ã =

 A B

0 J

 ∈ C(n+p)×(n+p), B = [bp, bp−1, · · · , b1] ∈ Cn×p, and

J =

 0 Ip−1

0 0

 ∈ Cp×p. Thus the evaluating of (1.1) can be replaced by ap-

proximating the action of the matrix exponential on a vector. However, the matrix
Ã is usually large and sparse such that the explicit computation of this matrix ex-
ponential is still not a trivial task. This paper tries to employ the block SI Krylov
subspace algorithm to reduce the dimension of matrix A and solve the reduced
approximation to (2.1) exactly.

The following result proved in [32] establish a useful relation between the repre-
sentation (1.1) and the exact solution of linear differential equations with polynomial
inhomogeneity, which also provides the platform for developing the block SI Krylov
subspace algorithm.

Lemma 2.1. The non-autonomous linear initial value problem

y′(t) = Ay(t) +

p−1∑
j=0

tj

j!
bj+1, y(0) = b0, (2.2)
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has the exact solution

y(t) = ϕ0(tA)b0 +

p−1∑
j=0

tj+1ϕj+1(tA)bj+1, (2.3)

where the functions ϕi are defined in (1.2).

On taking t = 1, the representation (2.3) reduces to (1.1). This means one can
obtain an approximation of (1.1) by solving the IVP (2.2). By using the equivalence
relation between computing the representation (1.1) and solving the above systems
of ODEs, we can derive a low-dimensional matrix exponential to approximate the
matrix functions (1.1) by projecting the solution of the IVP (2.2) onto a block
Krylov subspace generated by a SI matrix. The idea of using Krylov subspace
techniques to reduce large-scale systems of ODEs is not new but has been used
often, see, e.g., [3, 4, 7, 22, 30]. In [6], Botchev has applied the block SI Krylov
subspace methods to solve systems of ODEs of the form

y′ = Ay + g(t). (2.4)

The IVP (2.2), as a special form of (2.4), can be solved naturally by the method.
Here, we wish to fully take advantage of the structure of IVP (2.2) and obtain a
numerical solution to (1.1) based on block SI Krylov subspace method such that
some interesting properties can be maintained.

An IVP with nonzero initial vector can always be converted to one with zero
initial vector by replacing the state vector y(t) by y(t) − y0. For convenience, we
consider the non-autonomous linear IVP (2.2) with zero initial vector.

Let B = [b1, b2, · · · , bp] and P (t) = [1, t, t
2

2! , · · · ,
tp−1

(p−1)! ]
T , then IVP (2.2) with

zero initial vector can be rewritten in the following form

y′(t) = Ay(t) +BP (t), y(0) = 0. (2.5)

Premultiply IVP (2.5) by matrix Â = (I + γA)−1 to get

Ây′(t) =
(I − Â)

γ
y(t) + ÂBP (t), y(0) = 0, (2.6)

where γ ∈ C\{z|zλ+ 1 6= 0, λ ∈ Λ(A)} is a suitably chosen nonzero parameter.
Let B = V1R be the economy-size QR decomposition of B, thus V1 is an n× p

column orthogonal matrix, and R is a p × p upper triangular matrix. Applying
m steps of the modified block Arnoldi process [35, Algorithm 6.23] to Km(Â, V1),
we obtain the recursion relation

ÂVm = VmHm + Vm+1Hm+1,mE
T
m = Vm+1H̄m, (2.7)

where the columns of Vm form an orthonormal basis of Km(Â, V1), H̄m = (Hij) is a
(m+1)p×mp block upper-Hessenberg matrix with p×p blocks Hij as its elements,
and Hm is obtained by deleting the last row block of H̄m. Algorithm 1 is a brief
description of the block Arnoldi process to Km(Â, V1). Once A is symmetric, this
process can be replaced by the symmetric block Lanczos algorithm (see Algorithm
2).
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Algorithm 1 Block Arnoldi process to Km(Â, V1)

1: Choose a n× p unitary matrix V1

2: for j = 1, 2, · · · ,m, do
3: Solve the linear system (I + γA)Wj = Vj
4: for i = 1, 2, · · · , j, do
5: Hij = V Ti Wj

6: Wj = Wj − ViHij

7: end for
8: Compute the QR decomposition Wj = Vj+1Hj+1,j

9: end for

Algorithm 2 Symmetric block Lanczos process to Km(Â, V1)

1: Choose a n× p unitary matrix V1

2: for j = 1, 2, · · · ,m, do
3: Solve the linear system (I + γA)Wj = Vj
4: Hjj = V Tj Wj

5: Wj = Wj − Vj−1Hj,j−1 − VjHjj

6: Compute the QR decomposition Wj = Vj+1Hj+1,j

7: end for

Provided Hm is invertible and let Tm =
(H−1

m −I)
γ , the relation (2.7) can be

rewritten as

VmTm = AVm +
(I + γA)

γ
Vm+1Hm+1,mE

T
mH−1

m . (2.8)

We project the solution of systems (2.6) onto the block Krylov subspace Km(Â, V1).
Then, y(t) can be approximated by

y(t) ≈ Vmu(t), (2.9)

where u(t) ∈ Rmp is a low-dimensional vector function to be determined.
By substituting the approximation for y(t) directly into equation (2.6), the resid-

ual associated with this approximation is

rm(t) = ÂVmu′(t)−
(I − Â)

γ
Vmu(t)− ÂBP (t), u(0) = 0. (2.10)

By analogy with the idea of weighted residual, imposing the orthogonality condition
VTmrm = 0 and left-multiplying equation (2.10) by VTm, we arrive at the reduced-
order system

Hmu′(t) =
(I −Hm)

γ
u(t) +HmE1RP (t), u(0) = 0, (2.11)

which may be written in the simplified form

u′(t) = Tmu(t) + E1RP (t), u(0) = 0. (2.12)

It is obvious that the reduced systems (2.12) preserve the original structure of
the systems (2.5). Thus its exact solution can be similarly represented by a linear
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combination of the action of ϕ-function on vectors, by identity (2.1), which in turn
can be denoted as

u(t) = [Imp, 0]etT̃mep(m+1), (2.13)

where

T̃m =

 Tm W

0 J

 , J =

 0 Ip−1

0 0

 ∈ Rp×p,

and W is a flipped matrix of E1R in the left-right direction. Then we arrive at

ym(t) = Vmu(t) = [Vm, 0]etT̃mep(m+1). (2.14)

The original problem—which is equivalent to computing [In, 0]eÃ

 b0

ep

 with

Ã ∈ R(n+p)×(n+p)—has been replaced by evaluating [Vm, 0]eT̃mep(m+1) with T̃m ∈
R(m+1)p×(m+1)p and mp� n. For the reduced problem, the matrix exponential can
be solved by a direct method such as the scaling-and-squaring algorithms [1, 17].
The above discussion is summarized below as Algorithm 3.

Algorithm 3 The block SI Krylov subspace algorithm for the matrix function (2.3)

1: Given: A, B = [b0, b1, · · · , bp] and t
2: b1 := b1 +Ab0
3: Compute the QR decomposition: B(:, 2 : p+ 1) = V1R
4: for m = 1, 2, · · · until convergence do
5: Compute Arnoldi/Lanczos decomposition:

(I + γA)−1Vm = VmHm + Vm+1Hm+1,mE
T
m of Km((I + γA)−1, V1)

6: Compute Tm =
(H−1

m −I)
γ

7: Form T̃m : W(:, i) = (E1R)(:, p− i+ 1), i = 1, 2, · · · p, and

T̃m :=

 Tm W

0 Jp


8: Compute u(t) = [Im, 0]etT̃mep(m+1)

9: Compute ym(t) = Vmu(t) + b0
10: end for

3. A posteriori error estimates and corrected schemes

In actual calculation, it is important to provide a possible simple and reliable stop-
ping criterion to determine whether or not the approximation ym has the required
accuracy. To this purpose we first consider the explicit expression for the error.

Premultiply equation (2.12) by Vm to get

y′m(t) = VmTmVTmym(t) + V1RP (t), ym(0) = 0. (3.1)
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Using the relation (2.8), we see that our approximation satisfies

y′m(t) = Aym(t) +
(I + γA)

γ
Vm+1Hm+1,mE

T
mH−1

m VTmym(t) + V1RP (t), ym(0) = 0.

(3.2)
Then, the error εm(t) := y(t) − ym(t) as a function of t satisfies the initial value
problem

ε′m(t) = Aεm(t)− (I + γA)

γ
Vm+1Hm+1,mE

T
mH−1

m VTmym(t), εm(0) = 0. (3.3)

By using the variation-of-constants formula, the exact solution of (3.3) can be ex-
plicitly denoted as

εm(t) = − (I + γA)

γ

∫ t

0

e(t−s)AVm+1Hm+1,mE
T
mH−1

m VTmym(s)ds. (3.4)

The above derivation is exactly the same as in [5, 6]. However, the evaluation of
(3.4) is difficult to measure in practice as it requires to construct a quadrature
approximation to the integral. The following theorem presents an alternative to the
error by reformulating the expression (3.4) as an expansion in terms of products
between ϕ-functions of matrices and vectors.

Theorem 3.1. The error εm(t) satisfies the following expansion:

εm(t) = − t(I + γA)

γ

∞∑
j=0

(tA)jVm+1Hm+1,mE
T
m(γTm + I)[Imp, 0]ϕj+1(tT̃m)ep(m+1).

(3.5)

Proof. Inserting the expression (2.14) and the Taylor expansion of e(t−s)A into
(3.4), we obtain

εm(t) = − (I + γA)

γ

∫ t

0

∞∑
i=1

(t− s)iAi

i!
Vm+1Hm+1,mE

T
m(γTm + I)[Imp, 0]esT̃mep(m+1)ds

= − (I + γA)

γ

∞∑
i=1

AiVm+1Hm+1,mE
T
m(γTm + I)[Imp, 0]

∫ t

0

(t− s)i

i!
esT̃mds · ep(m+1).

Since ∫ t

0

(t− s)i

i!
esT̃mds = ti+1

∫ 1

0

θi

i!
et(1−θ)T̃mdθ,

we arrive at the conclusion.
In fact, many approximations for matrix functions based on Krylov subspace

methods have the similar error expansion of form (3.5), including the Arnoldi/Lanczos
approximation to ϕp(A)b, p ≥ 0, the SI Krylov subspace method to eAb and the
restarted Krylov subspace approximation to f(A)b and so on, see, e.g., [10,11,31,34]
and the references given therein. Following the classical proposal in [34], see also [21]
for further theoretical analysis, a practical stopping criterion without involving any
multiplications with the matrix A is presented as follows

ε1
m =

t

γ
‖ Vm+1Hm+1,mE

T
m(γTm + I)[Imp, 0]ϕ1(tT̃m)ep(m+1) ‖ . (3.6)
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Substituting ϕ1(tT̃m) by etT̃m , we may obtain a slightly rough estimate without
having to compute an extra ϕ1-function

ε2
m =

t

γ
‖ Vm+1Hm+1,mE

T
m(γTm + I)[Imp, 0]etT̃mep(m+1) ‖ . (3.7)

These error estimates can be embedded into Algorithm 3 to terminate Arnol-
di/Lanczos process once the required accuracy has been achieved. We have tested
the performance of them using a suite of test matrices. Numerical results show that
the two a posteriori estimates follow the actual error closely. For the sake of brevity,
we only choose two frequently used matrices to discuss in Section 4.

We also use the first term of the error expansion (3.5) or its variants as a cor-
rector. Typical corrected schemes include

y1
m(t) = ym(t)− t(I + γA)

γ
Vm+1Hm+1,mE

T
m(γTm + I)[Imp, 0]ϕ1(tT̃m)ep(m+1), (3.8)

y2
m(t) = ym(t)− t

γ
Vm+1Hm+1,mE

T
m(γTm + I)[Imp, 0]ϕ1(tT̃m)ep(m+1) (3.9)

and

y3
m(t) = ym(t)− t

γ
Vm+1Hm+1,mE

T
m[Imp, 0]ϕ1(tT̃m)ep(m+1). (3.10)

These corrected schemes provide the solutions in an enlarged block Krylov subspace
of dimension (m + 1)p by involving the information of Vm+1 and can be expected
to achieve higher precision.

Let

Ṽm+1 = (I + γA)Vm+1, T 1
m+1 =

 T̃m 0

− 1
γHm+1,mE

T
m(γTm + I)[Imp, 0] 0

 ,

and

T 2
m+1 =

 T̃m 0

− 1
γHm+1,mE

T
m[Imp, 0] 0

 .

Then, a direct calculation shows that these corrected schemes can be rewritten in
the following condensed form

y1
m(t) = [Vm, Ṽm+1]

 Imp 0 0

0 0 Ip

 etT
1
m+1ep(m+1), (3.11)

y2
m(t) = Vm+1

 Imp 0 0

0 0 Ip

 etT
1
m+1ep(m+1) (3.12)

and

y3
m(t) = Vm+1

 Imp 0 0

0 0 Ip

 etT
2
m+1ep(m+1), (3.13)

respectively. The above corrected schemes avoid involving evaluate the ϕ1-function
and can be measured directly by MATLAB’s expm.
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4. Numerical experiments

In this section we present several numerical experiments to demonstrate error bound-
s derived and show the efficiency of our algorithm over two state-of-the-art numerical
algorithms. All experiments are carried out in MATLAB R2012a on a laptop with
2.6 GHz Intel Core i5 processor and RAM 6 GB.

In the first experiment, we shall compare the actual errors of Algorithm 3 with
the a posteriori error estimates and test the efficiency of the corrected schemes. In
the other two experiments, we compare our code with two existing codes so-called
phiv and phipm on various large sparse matrices. The first code phiv is from EX-
POKIT [31], which evaluates ϕ0(tA)b0 +ϕ1(tA)b1 using Krylov subspace projection
techniques. The codes are directly available from http://www.maths.uq.edu.au/

expokit/. The second code phipm of Niesen and Wright [29] computes the linear
combination of form (1.1), which is available from http://www1.maths.leeds.ac.

uk/~jitse/software.html. We run both codes with their default parameters and
the variable convergence tolerance in our experiments. As was done in [11], we pick
the shift γ = −0.1 in the block SI Arnoldi/Lanczos algorithm. The linear systems
arising in the block SI Arnoldi/Lanczos process can either be solved directly or
with a preconditioned iterative method, e.g., see [11]. Here we use a sparse LU
factorization to solve the linear systems. In most cases, we compare Algorithm 3
with phipm.

We make use of the relative error

Error =
‖y − ym‖2
‖y‖2

(4.1)

to measure the stopping criteria of all numerical methods, where ym and y are the
approximation and the “exact” solution, respectively. Unless otherwise stated, the
“exact” solutions are obtained by using the MATLAB’s build-in functions ode45 or
ode15s with small relative and absolute tolerances to compute the corresponding
systems of ODEs. For a small or medium sized matrix T, we use MATLAB’s
build-in function expm to compute the matrix exponential eT . The code expm is an
implementation of the scaling-and-squaring method [17].

Experiment 1. This experiment is a variation of one from Jia and Lv [21]. There
are two test matrices in the experiment. The first test matrix is a diagonal matrix
of size 1001 taken with equally spaced diagonal entries in the interval [-1, 0]. The
second test matrix comes from the seven-point stencil finite difference method dis-
cretization of a 3D convection-diffusion problem, which can be represented as the
Kronecker product form

A = In ⊗ [In ⊗ C1] + [B ⊗ In + In ⊗ C2]⊗ In

of dimension N = n3. Here,

B = tridiag(1,−2, 1), Cj = tridiag(1 + µj ,−2, 1− µj), j = 1, 2,

where µj = τjh/2. This nonsymmetric matrix is a popular test matrix since it has
known eigenvalues. For a detailed description of the spectral properties, we refer
to [26]. As in [26], we choose h = 1/16 and τ1 = 96, τ2 = 128, which leads to
N = 3375 and µ1 = 3, µ2 = 4.

http://www.maths.uq.edu.au/expokit/
http://www.maths.uq.edu.au/expokit/
http://www1.maths.leeds.ac.uk/~jitse/software.html
http://www1.maths.leeds.ac.uk/~jitse/software.html
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We want to compute ϕ0(tA)b0 + ϕ1(tA)b1 + · · · + ϕ5(tA)b5 with t = 1, 400 for
the first test matrix and t = 0.1, 20 for the second one, where bi, i = 0, 1, · · · , 5 are
generated randomly by MATLAB function rand for each matrix. We define relative
a posterior error estimates as

ε1
m :=

ε1
m

‖y‖2
(4.2)

and

ε2
m :=

ε2
m

‖y‖2
, (4.3)

and compare them with the true relative error (4.1). Figures 1-4 report the numer-
ical results.
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Figure 1. Experiment 1: The actual relative error (+) and the relative error estimates (3.6) (?) and
(3.7) (o) versus iteration steps for the first test matrix. Left picture: t=1 and right picture: t=400.
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Figure 2. Experiment 1: The relative errors of standard method (+) and corrected methods (3.11) (o),
(3.12) (?) and (3.13) (�) versus iteration steps for the first test matrix. Left picture: t = 1 and right
picture: t = 400.

Figure 1 plots the curves of the true relative error of Algorithm 3 and the two
relative error estimates (4.2) and (4.3) for the first test matrix. The behaviour of the
corrected schemes is plotted in Figure 2. Similar results for the second test matrix
are shown in Figure 3 and Figure 4. From these figures we see that Algorithm
3 achieve high precision of about 10−12 in all cases. Both error estimates turn
out to be effective in all cases, which follow well the behavior of the actual error.
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Figure 3. Experiment 1: The actual relative error (+) and the relative error estimates (3.6) (?) and
(3.7) (o) versus iteration steps for the second test matrix. Left picture: t = 0.1 and right picture: t = 20.
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Figure 4. Experiment 1: The relative errors of standard method (+) and corrected methods (3.11) (o),
(3.12) (?) and (3.13) (�) versus iteration steps for the second test matrix. Left picture: t = 0.1 and
right picture: t = 20.

Particularly, the error estimate (3.6) is sharper than (3.7) and is indistinguishable
from the true error for the two test matrices with small t.

In most cases, we observe that the corrected schemes are more accurate than the
standard one. Furthermore, we notice that when t = 1 for the first test matrix and
t = 0.1 for the second, the corrected schemes (3.11) and (3.12) are more accurate
than (3.13). However, as t increases, the scheme (3.11) deteriorates, which can be
attributed to this representation involving tA.

The following experiments try to show competitiveness of Algorithm 3 over two
popular algorithms for computing (1.1). For each problem, the efficiency of an
algorithm is measured in terms of CPU time (CPU) and the relative error (Error).
The CPU time is computed by MATLAB functions tic and toc. Each test has been
run three times to use the minimum speedup.

Experiment 2. In this experiment, we compare the performance of Algorithm
3 and phipm by evaluating ϕ0(A)b0 + ϕ1(A)b1 + · · · + ϕp(A)bp for p = 5, 10. The
experiment is performed on four different test matrices with order 10,000. For
each matrix and p, the vectors bi, i = 0, 1, · · · , p, with elements from the uni-
form [0,1] distribution and generated by code rand. The first three matrices are
generated by MATLAB build-in functions wilkinson and gallery. The first test ma-
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trix is -wilknson(10000), which is a symmetric, tridiagonal matrix with Wilkinson’s
eigenvalues. The second matrix is generated by gallery(’lesp’,10000). It returns an
unsymmetric, tridiagonal matrix with real, negative and sensitive eigenvalues. The
third matrix is constructed by -2500×gallery(’poisson’,99) in MATLAB, which is a
block tridiagonal matrix and arises from a multiple of the standard finite difference
discretization of the 2D Laplacian. The final matrix is taken from [5, Experiment
6.2], which is the negative of the standard 5-point discretization of a 2D convection-
diffusion operator with Pe = 100. It is an unsymmetric matrix with 49, 600 nonzero
elements.

Table 1 lists the numerical results. We see from Table 1 that Algorithm 3
performs much better than phipm. For p = 5, the two methods deliver required
accuracy, but Algorithm 3 outperforms phipm in terms of the CPU time. While for
p = 10, phipm fails to convergence (f.c), but our algorithm succeeds. The table also
shows that the increase of p has no significant effect on the CPU time of Algorithm
3.

Table 1. The CPU and the relative errors of phipm and Algorithm 3 on four matrices.

p Algorithm
-wilknson(10000) gallery(’lesp’,10000) -2500gallery(’poisson’,99) con-diff-pe100

Error Time Error Time Error Time Error Time

5
Algorithm 3 7.47e-12 0.27 2.26e-11 0.16 1.02e-11 0.18 3.92e-13 0.65

phipm 8.11e-12 0.28 1.19e-11 7.95 1.80e-11 0.69 7.85e-12 1.15

10
Algorithm 3 9.60e-11 0.42 1.83e-11 0.26 5.27e-12 0.28 9.34e-13 1.33

phipm f.c f.c f.c f.c

Experiment 3. This experiment uses essentially the same tests as [37]. There
are two symmetric positive test matrices, which are directly available from the
University of Florida Sparse Matrix Collection. The matrices and problem details
are
• The first matrix, 1138bus arising from power system networks, is of order

n = 1138 with nnz = 2596 nonzero elements.
• The second matrix, PresPoisson arising from computational fluid dynamics

problems, is of order n = 14822 with nnz = 715804 nonzero elements.
We evaluate ϕ0(−tA)b0 + ϕ1(−tA)b1 + · · · + ϕp(−tA)bp with p = 1, 5 at each

t =1,10,100,1000 for the first matrix, and t =100,1000,10000,100000 for the second
one. As in Experiments 1 and 2, for each test matrix A and p, vectors bi, i =
0, 1, · · · , p are randomly generated by MATLAB build-in function rand.

The codes adopted are phiv, phipm and Algorithm 3 for p = 1 and phipm and
Algorithm 3 for p = 5. For the second matrix at t = 100000, the MATLAB build-
in functions ode45 and ode15s are infeasible to compute the corresponding ODEs.
As a compromise, we regard the approximations obtained by phipm with a small
tolerance as the “exact” solutions. Tables 2 and 3 report the numerical results of
the test runs. The results in Tables 2 and 3 show that Algorithm 3 is the fastest,
in some cases by a considering margin, especially when t is large. Moreover, one
observes that the CPU time for Algorithm 3 has little changes as t increase, but
the CPU time for the other algorithms increase dramatically as t become large.
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Table 2. CPU and the relative errors of phiv, phipm and Algorithm 3 for 1138bus.

p Methods
t=1 t=10 t=100 t=1000

Error Time Error Time Error Time Error Time

1

phiv 2.14e-13 0.44 1.49e-13 2.82 4.49e-12 14.60 3.92e-10 64.20

phipm 2.15e-13 0.19 1.58e-13 0.81 3.54e-12 3.02 1.36e-10 13.65

Algorithm 3 3.09e-13 0.07 7.14e-13 0.07 9.32e-12 0.06 1.41e-10 0.07

5
phipm 5.22e-12 0.18 2.63e-12 0.77 4.24e-11 6.76 5.94e-10 75.19

Algorithm 3 3.35e-12 0.16 4.60e-12 0.12 1.87e-11 0.08 9.29e-10 0.07

Table 3. CPU and the relative errors of phiv, phipm and Algorithm 3 for PresPoisson.

p Methods
t=100 t=1000 t=10000 t=100000

Error Time Error Time Error Time Error Time

1

phiv 9.75e-14 1.37 2.37e-14 6.81 4.96e-13 46.37 3.11e-12 304.90

phipm 1.74e-14 0.72 5.95e-13 3.15 1.20e-13 15.65 4.80e-12 76.17

Algorithm 3 7.55e-14 0.86 2.92e-13 0.83 9.86.1e-13 0.86 3.92e-12 0.62

5
phipm 8.69e-14 0.70 5.95e-13 3.19 8.55e-12 14.42 4.63e-12 79.40

Algorithm 3 8.83e-14 0.85 2.92e-13 0.80 7.34e-12 0.83 5.08e-12 0.61

5. Conclusion

The aim of this paper is to apply the block SI Krylov subspace methods to the linear
combination of ϕ-functions acting on vectors. We have proposed two practical a
posteriori error estimates and established three compact corrected schemes. We
have numerically confirmed the effectiveness of the numerical methods and error
estimates.

For future work, we plan to present a comprehensive convergence and stability
analysis of algorithms presented. A theoretical interpretation of two a posteriori
error estimates should be further taken into account. Another interesting question
is to develop restarted iterative methods based on residual.
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