首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new hyperbolic displacement models, HPSDT1 and HPSDT2, are used for the buckling and free vibration analyses of simply supported orthotropic laminated composite plates. The models contain hyperbolic expressions to account for the parabolic distributions of transverse shear stresses and to satisfy the zero shear-stress conditions at the top and bottom surfaces of the plates. The equation of motion for thick laminated rectangular plates subjected to in-plane loads is deduced through the use of Hamilton’s principle. Closed-form solutions are obtained by using the Navier technique, and then the buckling loads and the fundamental frequencies are found by solving eigenvalue problems. The accuracy of the models presented is demonstrated by comparing the results obtained with solutions of other higher-order models given in the literature. It is found that the theories proposed can predict the fundamental frequencies and buckling loads of cross-ply laminated composite plates rather accurately. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 44, No. 2, pp. 217–230, March–April, 2008.  相似文献   

2.
Two hyperbolic displacement models, HPSDT1 and HPSDT2, are developed for a bending analysis of orthotropic laminated composite plates. These models take into account the parabolic distribution of transverse shear stresses and satisfy the condition of zero shear stresses on the top and bottom surfaces of the plates. The accuracy of the analysis presented is demonstrated by comparing the results with solutions derived from other higher-order models and with data found in the literature. It is established that the HPSDT1 model is more accurate than some theories of laminates developed previously, and therefore the analysis can be expanded to laminated composite shells.  相似文献   

3.
In this work, a transverse bending of shear deformable laminated composite plates in Green–Lagrange sense accounting for the transverse shear and large rotations are presented. Governing equations are developed in the framework of higher order shear deformation theory. All higher order terms arising from nonlinear strain–displacement relations are included in the formulation. The present plate theory satisfies zero transverse shear strains conditions at the top and bottom surfaces of the plate in von-Karman sense. A C0 isoparametric finite element is developed for the present nonlinear model. Numerical results for the laminated composite plates of orthotropic materials with different system parameters and boundary conditions are found out. The results are also compared with those available in the literature. Some new results with different parameters are also presented.  相似文献   

4.
Bending and free vibration behaviour of laminated soft core skew sandwich plate with stiff laminate face sheets is investigated using a recently developed C0 finite element (FE) model based on higher order zigzag theory (HOZT) in this paper. The in-plane displacement fields are assumed as a combination of a linear zigzag function with different slopes at each layer and a cubically varying function over the entire thickness. The out of plane displacement is considered to be quadratic within the core and constant in the face sheets. The plate theory ensures a shear stress-free condition at the top and bottom surfaces of the plate. Thus, the plate theory has all of the features required for accurate modelling of laminated skew sandwich plates. As very few element model based on this plate theory (HOZT) exist and they possess certain disadvantages, an attempt has been made to check the applicability of the refined element model. The nodal field variables are chosen in such a manner that there is no need to impose any penalty stiffness in the formulation. Refined C0 finite element model has been utilized to study some interesting problems on static and free vibration analysis of laminated skew sandwich plates.  相似文献   

5.
Based on a 7-parameter shell model, a numerical algorithm has been developed for solving a coupled problem of thermoelectroelasticity for a laminated piezoelectric shell subjected to a thermoelectromechanical loading. As unknowns, six tangential and transverse displacements of outer surfaces and the transverse displacement of shell midsurface are chosen. This choice provides a possibility of utilizing the complete 3D constitutive equations of thermopiezoelectricity. A geometrically exact 3D hybrid piezoelectric shell element is formulated by using nonconventional analytical integration. With the help of this finite element, solutions of coupled problems of thermoelectroelasticity for laminated plates and shells with segmented and distributed piezoelectric sensors and actuators are obtained.  相似文献   

6.
This paper describes a higher-order global-local theory for thermal/mechanical response of moderately thick laminated composites with general lamination configurations. In-plane displacement fields are constructed by superimposing the third-order local displacement field to the global cubic displacement field. To eliminate layer-dependent variables, interlaminar shear stress compatibility conditions have been employed, so that the number of variables involved in the proposed model is independent of the number of layers of laminates. Imposing shear stress free condition at the top and the bottom surfaces, derivatives of transverse displacement are eliminated from the displacement field, so that C0 interpolation functions are only required for the finite element implementation. To assess the proposed model, the quadratic six-node C0 triangular element is employed for the interpolation of all the displacement parameters defined at each nodal point on the composite plate. Comparing to various existing laminated plate models, it is found that simple C0 finite elements with non-zero normal strain could produce more accurate displacement and stresses for thick multilayer composite plates subjected to thermal and mechanical loads. Finally, it is remarked that the proposed model is quite robust, such that the finite element results are not sensitive to the mesh configuration and can rapidly converge to 3-D elasticity solutions using regular or irregular meshes.  相似文献   

7.
In this study, based on the reduced form of elasticity displacement field for a long laminate, an analytical method is established to exactly obtain the interlaminar stresses near the free edges of generally laminated composite plates subjects to extension, torsion, and bending. The constant parameters being in the displacement field, which describe the global deformation of a laminate, are appropriately calculated by using the improved first-order shear deformation theory. Reddy’s layerwise theory is subsequently employed for analytical and numerical examinations of the boundary layer stresses within arbitrary laminated composite plates. Various numerical results are developed for the interlaminar normal and shear stresses along the interfaces and through the thickness of laminates near the free edges. Finally the effects of end conditions of laminates and geometric parameters on the boundary-layer stress are studied.  相似文献   

8.
A mathematical model of laminated plates and masses in the form of bands was elaborated using an iterative approach. A system of differential equations was written relative to the unknown functions found on face surfaces. This allows dividing the structure into several bands by thickness if necessary. The stress-strain state of each one is described by the proposed system of differential equations. It is possible to attain a high accuracy of determination of the components of the displacement vector and stress tensor. However, for most of the problems of calculation of both plates and masses analyzed, it is totally sufficient to examine one band. The analogy in the differential operators relative to the unknown function significantly facilitates the realization of such a model.Ukrainian Transportation University, Kiev, Ukraine. Translated from Mekhanika Kompozitnykh Materialov, Vol. 32. No. 3, pp. 377–387, May–June, 1996.  相似文献   

9.
层合板的层间粘接模型对整个层合板的结构有重要影响.运用Hamilton正则方程对层合板层间的不同类型的粘接模型进行了分析.结合弹性材料修正后的Hellinger Reissner变分原理和插值函数,构建了直角坐标系下8节点层合板的每一层的线性方程;考虑到脱层板的连接界面处应力和位移的关系,改进了现有的常用弱粘接模型,建立不同粘接模型的控制方程;最后通过求解整个板的控制方程,得到层合板的层间应力和位移.数值算例验证了该模型的正确性,并研究了层间界面为线性和非线性时的问题.结果表明:应用改进后的弱粘接模型,能够更好地模拟层合板的弱界面失效过程.  相似文献   

10.
Mechanics of Composite Materials - Based on the method of sampling surfaces, a hybrid finite-element model is developed for a three-dimensional analysis of laminated composite plates with...  相似文献   

11.
任意厚度具有自由边叠层板的精确解析解   总被引:1,自引:0,他引:1       下载免费PDF全文
自由边问题一直是三维弹性力学中的难题,通常很难满足自由边上一个正应力和两个剪应力都等于0.基于三维弹性力学基本方程和状态空间方法,引入自由边界位移函数并考虑全部弹性常数,建立了正交异性具有自由边单层和叠层板的状态方程.对状态方程中的变量以级数形式展开,通过边界条件的满足精确求解任意厚度具有自由边叠层板的位移和应力,此解满足层间应力和位移的连续条件.算例计算表明,采用引入的位移函数形式,简化了计算过程并且采用较少的级数项可以获得收敛解.与有限元方法计算结果进行了对比,可以得到较高精度的数值结果.其解可以作为其它数值方法和半解析方法的参考解.  相似文献   

12.
基于改进Chebyshev级数的层合结构-振动分析新理论   总被引:1,自引:1,他引:0       下载免费PDF全文
提出了一种基于改进Chebyshev级数的层合结构高阶分层建模理论.该理论位移场由线性位移场和高阶位移场组成,线性位移场控制位移场的总体分布趋势,高阶位移场进行局部修正.高阶位移场由具有统一表达式的改进Chebyshev级数表示,通过改变高阶截断阶数可实现高阶位移场快速配置,能够满足不同建模精度需求.采用该高阶分层理论和广义谱方法推导了层合结构的自由振动特征方程,研究了一般边界条件下层合梁、板、壳的自由振动特性,并将计算结果与其他文献数据对比.结果表明:基于改进Chebyshev级数的层合结构高阶分层理论具有较高的建模精度和计算效率.  相似文献   

13.
一矩形横截面的叠层复合材料杆,由以一种材料为中心部分,及另一种材料的上下两相同的盖板所组成.以线性弯曲应力所组成的力偶,作用于杆两端的中心部分(图1a),使杆弯曲.本文将探讨层间应力,以表明力是怎样通过胶合面传递给盖板的.  相似文献   

14.
针对四边简支的横观各向同性矩形板的弯曲、振动和稳定给出了新的状态空间分析方法。从横观各向同性弹性力学的三维基本方程出发,通过引入位移函数和应力函数,构造了两类相互独立的状态空间方程,不仅使原方程得到解耦而且降低了阶数,十分有利于具体问题的求解。对于四边简支的矩形板,建立了层合板上下表面状态变量间的关系式。特别针对矩形板的自由振动(稳定)问题,发现存在两类彼此无关的形式,一类对应板的纯面内振动(稳定),而另一类则是一般意义上的板的弯曲振动(稳定)。给出了数值结果,并考察了相关参数的影响。  相似文献   

15.
常用的对称迭层板为各向异性板.根据平面应力问题的基本方程精确地用应力函数解法求得了各向异性板的一般解析解.推导出平面内应力和位移的一般公式,其中积分常数由边界条件来决定.一般解包括三角函数和双曲函数组成的解,它能满足4个边为任意边界条件的问题.还有代数多项式解,它能满足4个角的边界条件.因此一般解可用以求解任意边界条件下的平面应力问题.以4边承受均匀法向和切向载荷以及非均匀法向载荷的对称迭层方板为例,进行了计算和分析.  相似文献   

16.
An analytical solution methodology for the non-linear dynamic displacement response of laminated composite plates subjected to different types of pulse loading is presented. The mathematical formulation is based on third-order shear deformation plate theory and von-Karman non-linear kinematics. Fast-converging finite double Chebyshev series is employed for evaluating the displacement response. Houbolt time marching scheme is used for temporal discretization and quadratic extrapolation technique is used for linearization. The effects of magnitude and duration of the pulse load, boundary conditions and plate parameters on the central displacement and bending moment responses are studied.  相似文献   

17.
The free vibration of laminated composite plates on elastic foundations is examined by using a refined hyperbolic shear deformation theory. This theory is based on the assumption that the transverse displacements consist of bending and shear components where the bending components do not contribute to shear forces, and likewise, the shear components do not contribute to bending moments. The most interesting feature of this theory is that it allows for parabolic distributions of transverse shear stresses across the plate thickness and satisfies the conditions of zero shear stresses at the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns in the present theory is four, as against five in other shear deformation theories. In the analysis, the foundation is modeled as a two-parameter Pasternak-type foundation, or as a Winkler-type one if the second foundation parameter is zero. The equation of motion for simply supported thick laminated rectangular plates resting on an elastic foundation is obtained through the use of Hamilton’s principle. The numerical results found in the present analysis for free the vibration of cross-ply laminated plates on elastic foundations are presented and compared with those available in the literature. The theory proposed is not only accurate, but also efficient in predicting the natural frequencies of laminated composite plates.  相似文献   

18.
本文应用[1]中提出的奇异摄动方法,在[3]的基础上,研究了在各种支承条件下承受均布载荷的对称正交铺设矩形叠层板的非线性弯曲问题,导出了挠度和应力函数的一致有效的N阶形式渐近解.对承受均布压力,边界位移为零的简支矩形板进行了分析、计算.  相似文献   

19.
A four-noded rectangular element with seven degrees of freedom at each node is developed for buckling analysis of laminated plate structures having any number of layers with a constant thickness of individual layers. The displacement model is so chosen that it can explain adequately the parabolic distribution of transverse shear stresses and the non-linearity of in-plane displacements across the thickness. A geometrical stiffness matrix is developed using in-plane stresses. A wide range of plates from thick to thin are examined under uniaxial loading conditions. The results are compared with the existing analytical and numerical solutions. The present formulations confirm its applicability for buckling analysis of a wide range of plates.  相似文献   

20.
基于高阶剪切法向变形板理论(HOSNDPT)利用无网格方法对层合板弯曲和振动问题进行数值分析.在通常的径向点插值法(RPIM)中对每个Gauss(高斯)点或计算点需要求矩矩阵的逆,且受到影响域半径大小的限制.而在加权节点径向点插值法(WN-RPIM) 近似中,求解系统矩阵的逆的数量等于问题域中的节点数量,它远远小于Gauss点的数目,可以大大减少矩矩阵求逆的计算量,且克服了RPIM中影响域半径大小的限制.首先,将三维板位移分解成厚度和面内位移的乘积,在厚度方向使用正交Legendre多项式作为基函数,在板的面内使用WN RPIM来构造形函数.然后,通过对层合板的弯曲问题进行数值计算表明WN-RPIM的计算精度和稳定性.最后,将该方法推广到对不同边界条件、不同厚跨比、不同铺设方式的层合板振动问题的数值计算,数值结果表明了本文提供方法的适用性和有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号