首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 205 毫秒
1.
提出了任意域上鳞状循环因子矩阵 ,利用多项式环的理想的Go bner基的算法给出了任意域上鳞状循环因子矩阵的极小多项式和公共极小多项式的一种算法 .同时给出了这类矩阵逆矩阵的一种求法 .在有理数域或模素数剩余类域上 ,这一算法可由代数系统软件Co CoA4 .0实现 .数值例子说明了算法的有效性  相似文献   

2.
研究了域上首尾和r-循环矩阵,利用多项式环的理想的Groebner基的算法给出了任意域上首尾和r-循环矩阵的极小多项式和公共极小多项式的一种算法.同时给出了这类矩阵逆矩阵的一种求法。  相似文献   

3.
The inversion of polynomial and rational matrices is considered. For regular matrices, three algorithms for computing the inverse matrix in a factored form are proposed. For singular matrices, algorithms of constructing pseudoinverse matrices are considered. The algorithms of inversion of rational matrices are based on the minimal factorization which reduces the problem to the inversion of polynomial matrices. A class of special polynomial matrices is regarded whose inverse matrices are also polynomial matrices. Inversion algorithms are applied to the solution of systems with polynomial and rational matrices. Bibliography: 3 titles. Translated by V. N. Kublanovskaya. Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 202, 1992, pp. 97–109.  相似文献   

4.
Known types of resultant matrices corresponding to one-parameter matrix polynomials are generalized to the multiparameter case. Based on the resultant approach suggested, methods for solving the following problems for multiparameter polynomial matrices are developed: computing a basis of the matrix range, computing a minimal basis of the right null-space, and constructing the Jordan chains and semilattices of vectors associated with a multiple spectrum point. In solving these problems, the original polynomial matrix is not transformed. Methods for solving other parametric problems of algebra can be developed on the basis of the method for computing a minimal basis of the null-space of a polynomial matrix. Issues concerning the optimality of computing the null-spaces of sparse resultant matrices and numerical precision are not considered. Bibliography: 19 titles. __________ Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 323, 2005, pp. 182–214.  相似文献   

5.
黄礼平 《数学学报》1998,41(4):871-880
本文应用最小中心多项式给出了体上代数矩阵的素有理标准形与初等因子组的构造,由此得到体上代数矩阵相似的充要条件以及相似于一个对角矩阵的充要条件.本文还讨论了体上矩阵的左、右特征值的构造与性质.  相似文献   

6.
In this paper, we study the resultants of polynomials which are the determinants of polynomial matrices, and we show that the determinant of a group matrix can be expressed in terms of an iterated resultant of a system of polynomials in several variables which are explicitly given in terms of first row entries. We also show how to obtain the block triangulation of block group matrices over a finite field.  相似文献   

7.
This paper is a logical continuation of the author's discussion about the solution of spectral problems for two-parameter polynomial matrices of general type. Various rank factorization algorithms are suggested, among them the so-called minimal factorization of a singular two-parameter polynomial matrix of degenerate rank into a product of some matrices whose ranks are equal to the rank of the original matrix. Spectral properties of these matrices are studied. The notion of minimal factorization is also extended to one-parameter polynomial and constant matrices. Bibliography: 13 titles. Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 219, 1994, pp. 94–116 Translated by V. N. Kublanovskaya.  相似文献   

8.
We investigate multiplication algorithms for dense and sparse polynomials and polynomial matrices over different numerical domains and obtain expressions for the complexity of multiplication of polynomials and polynomial matrices understood as the expectation of the number of arithmetic operations. These expressions for a set of parameters of practical interest are tabulated. The results of experiments with the corresponding programs are presented. Bibliography: 8 titles.  相似文献   

9.
In this work, free multivariate skew polynomial rings are considered, together with their quotients over ideals of skew polynomials that vanish at every point (which includes minimal multivariate skew polynomial rings). We provide a full classification of such multivariate skew polynomial rings (free or not) over finite fields. To that end, we first show that all ring morphisms from the field to the ring of square matrices are diagonalizable, and that the corresponding derivations are all inner derivations. Secondly, we show that all such multivariate skew polynomial rings over finite fields are isomorphic as algebras to a multivariate skew polynomial ring whose ring morphism from the field to the ring of square matrices is diagonal, and whose derivation is the zero derivation. Furthermore, we prove that two such representations only differ in a permutation on the field automorphisms appearing in the corresponding diagonal. The algebra isomorphisms are given by affine transformations of variables and preserve evaluations and degrees. In addition, ours proofs show that the simplified form of multivariate skew polynomial rings can be found computationally and explicitly.  相似文献   

10.
多项式的因式分解是符号计算中最基本的算法,二十世纪六十年代开始出现的关于多项式因式分解的工作被认为是符号计算领域的起源.目前多项式的因式分解已经成熟,并已在Maple等符号计算软件中实现,但代数扩域上的因式分解算法还有待进一步改进.代数扩域上的基本算法是Trager算法.Weinberger等提出了基于Hensel提升的算法.这些算法是在单个扩域上做因式分解.而在吴零点分解定理中,多个代数扩域上的因式分解是非常基本的一步,主要用于不可约升列的计算.为了解决这一问题,吴文俊,胡森、王东明分别提出了基于方程求解的多个扩域上的因式分解算法.王东明、林东岱提出了另外一个算法Trager算法相似,将问题化为有理数域上的分解.他们应用了吴的三角化算法,因此算法的终止性依赖于吴方法的计算.支丽红则将提升技巧用于多个扩域上的因式分解算法.本文将Trager的算法直接推广为连续扩域上的因式分解,只涉及结式计算与有理数域上的因式分解,给出了多个代数扩域上的因式分解一个直接的算法.  相似文献   

11.
Some algorithms are suggested for constructing pseudoinverse matrices and for solving systems with rectangular matrices whose entries depend on a parameter in polynomial and rational ways. The cases of one- and two-parameter matrices are considered. The construction of pseudoinverse matrices are realized on the basis of rank factorization algorithms. In the case of matrices with polynomial occurrence of parameters, these algorithms are the ΔW-1 and ΔW-2 algorithms for one- and two-parameter matrices, respectively. In the case of matrices with rational occurrence of parameters, these algorithms are the irreducible factorization algorithms. This paper is a continuation of the author's studies of the solution of systems with one-parameter matrices and an extension of the results to the case of two-parameter matrices with polynomial and rational entries. Bibliography: 12 titles. Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 219, 1994, pp. 176–185. This work was supported by the Russian Foundation of Fundamental Research (grant 94-01-00919). Translated by V. N. Kublanovskaya.  相似文献   

12.
We present a deterministic polynomial time algorithm for testing finiteness of a semigroupS generated by matrices with entries from function fields of constant transcendence degree over finite fields. A special case of the problem was shown to be algorithmically soluble in [RTB] by giving a sharp exponential upper bound on the dimension of the matrix algebra generated byS over the field of constants. One of the exponential time algorithms proposed in [RTB] was expected to be improvable. The polynomial time method presented in this note combines the ideas of that algorithm with a procedure from [IRSz] for calculating the radical. Research supported by NWO-OTKA Grant N26673, FKFP Grant 0612/1997, OTKA Grants 016503, 022925, and EC Grant ALTEC-KIT.  相似文献   

13.
A criterion is established for the one-sided equivalence of polynomial matrices; over an arbitrary field. If B(x) is a polynomial matrix of maximal rank, then a condition for the divisibility of a polynomial matrix A(x) by B(x) without a remainder, is indicated. For a square polynomial matrix, necessary and sufficient conditions for the one-sided equivalence of it to a unitary polynomial matrix are presented, and also a method is proposed for its construction.Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 42, No. 9, pp. 1213–1219, September, 1990.  相似文献   

14.
Starting from algorithms introduced in [Ky M. Vu, An extension of the Faddeev’s algorithms, in: Proceedings of the IEEE Multi-conference on Systems and Control on September 3-5th, 2008, San Antonio, TX] which are applicable to one-variable regular polynomial matrices, we introduce two dual extensions of the Faddeev’s algorithm to one-variable rectangular or singular matrices. Corresponding algorithms for symbolic computing the Drazin and the Moore-Penrose inverse are introduced. These algorithms are alternative with respect to previous representations of the Moore-Penrose and the Drazin inverse of one-variable polynomial matrices based on the Leverrier-Faddeev’s algorithm. Complexity analysis is performed. Algorithms are implemented in the symbolic computational package MATHEMATICA and illustrative test examples are presented.  相似文献   

15.
Our basic motivation is a direct method for computing the gradient of the pseudo-inverse of well-conditioned system with respect to a scalar, proposed in [13] by Layton. In the present paper we combine the Layton’s method together with the representation of the Moore-Penrose inverse of one-variable polynomial matrix from [24] and developed an algorithm for computing the gradient of the Moore-Penrose inverse for one-variable polynomial matrix. Moreover, using the representation of various types of pseudo-inverses from [26], based on the Grevile’s partitioning method, we derive more general algorithms for computing {1}, {1, 3} and {1, 4} inverses of one-variable rational and polynomial matrices. Introduced algorithms are implemented in the programming language MATHEMATICA. Illustrative examples on analytical matrices are presented.  相似文献   

16.
An extension of the definition of primitivity of a real nonnegative matrix to matrices with univariate polynomial entries is presented. Based on a suitably adapted notion of irreducibility an analogue of the classical characterization of real nonnegative primitive matrices by irreducibility and aperiodicity for matrices with univariate polynomial entries is given. In particular, univariate polynomials with nonnegative coefficients which admit a power with strictly positive coefficients are characterized. Moreover, a primitivity criterion based on almost linear periodic matrices over dioids is presented.  相似文献   

17.
Computations with univariate polynomials, like the evaluation of product, quotient, remainder, greatest common divisor, etc, are closely related to linear algebra computations performed with structured matrices having the Toeplitz-like or the Hankel-like structures.

The discrete Fourier transform, and the FFT algorithms for its computation, constitute a powerful tool for the design and analysis of fast algorithms for solving problems involving polynomials and structured matrices.

We recall the main correlations between polynomial and matrix computations and present two recent results in this field: in particular, we show how Fourier methods can speed up the solution of a wide class of problems arising in queueing theory where certain Markov chains, defined by infinite block Toeplitz matrices in generalized Hessenberg form, must be solved. Moreover, we present a new method for the numerical factorization of polynomials based on a matrix generalization of Koenig's theorem. This method, that relies on the evaluation/interpolation technique at the Fourier points, reduces the problem of polynomial factorization to the computation of the LU decomposition of a banded Toeplitz matrix with its rows and columns suitably permuted. Numerical experiments that show the effectiveness of our algorithms are presented  相似文献   

18.
A new method is presented for factorization of bivariate polynomials over any field of characteristic zero or of relatively large characteristic. It is based on a simple partial differential equation that gives a system of linear equations. As in Berlekamp's and Niederreiter's algorithms for factoring univariate polynomials, the dimension of the solution space of the linear system is equal to the number of absolutely irreducible factors of the polynomial to be factored, and any basis for the solution space gives a complete factorization by computing gcd's and by factoring univariate polynomials over the ground field. The new method finds absolute and rational factorizations simultaneously and is easy to implement for finite fields, local fields, number fields, and the complex number field. The theory of the new method allows an effective Hilbert irreducibility theorem, thus an efficient reduction of polynomials from multivariate to bivariate.

  相似文献   


19.
In the present paper, methods and algorithms for numerical solution of spectral problems and some problems in algebra related to them for one- and two-parameter polynomial and rational matrices are considered. A survey of known methods of solving spectral problems for polynomial matrices that are based on the rank factorization of constant matrices, i.e., that apply the singular value decomposition (SVD) and the normalized decomposition (the QR factorization), is given. The approach to the construction of methods that makes use of rank factorization is extended to one- and two-parameter polynomial and rational matrices. Methods and algorithms for solving some parametric problems in algebra based on ideas of rank factorization are presented. Bibliography: 326titles.Dedicated to the memory of my son AlexanderTranslated fromZapiski Nauchnykh Seminarov POMI, Vol. 238, 1997, pp. 7–328.Translated by V. N. Kublanovskaya.  相似文献   

20.
We address the issue of simplifying symbolic polynomials on non-commutative variables. The problem is motivated by applications in optimization and various problems in systems and control. We develop theory for polynomials which are linear in a subset of the variables and develop algorithms to produce representations which have the minimal possible number of terms. The results can handle polynomial matrices as well as block-matrix variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号