首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We characterize triangle‐free graphs for which there exists a subset of edges that intersects every chordless cycle in an odd number of edges (TF odd‐signable graphs). These graphs arise as building blocks of a decomposition theorem (for cap‐free odd‐signable graphs) obtained by the same authors. We give a polytime algorithm to test membership in this class. This algorithm is itself based on a decomposition theorem. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 204–220, 2000  相似文献   

2.
It has been shown by MacGillivray and Seyffarth (Austral. J. Combin. 24 (2001) 91) that bridgeless line graphs of complete graphs, complete bipartite graphs, and planar graphs have small cycle double covers. In this paper, we extend the result for complete bipartite graphs, and show that the line graph of any complete multipartite graph (other than K1,2) has a small cycle double cover.  相似文献   

3.
A graph is triangulated if it has no chordless cycle with four or more vertices. It follows that the complement of a triangulated graph cannot contain a chordless cycle with five or more vertices. We introduce a class of graphs (namely, weakly triangulated graphs) which includes both triangulated graphs and complements of triangulated graphs (we define a graph as weakly triangulated if neither it nor its complement contains a chordless cycle with five or more vertices). Our main result is a structural theorem which leads to a proof that weakly triangulated graphs are perfect.  相似文献   

4.
A triangular grid graph is a finite induced subgraph of the infinite graph associated with the two-dimensional triangular grid. In 2000, Reay and Zamfirescu showed that all 2-connected, linearly-convex triangular grid graphs (with the exception of one of them) are hamiltonian. The only exception is a graph D which is the linearly-convex hull of the Star of David. We extend this result to a wider class of locally connected triangular grid graphs. Namely, we prove that all connected, locally connected triangular grid graphs (with the same exception of graph D) are hamiltonian. Moreover, we present a sufficient condition for a connected graph to be fully cycle extendable. We also show that the problem Hamiltonian Cycle is NP-complete for triangular grid graphs.  相似文献   

5.
We prove that the strong product of any n connected graphs of maximum degree at most n contains a Hamilton cycle. In particular, GΔ(G) is hamiltonian for each connected graph G, which answers in affirmative a conjecture of Bermond, Germa, and Heydemann. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 299–321, 2005  相似文献   

6.
By Petersen's theorem, a bridgeless cubic graph has a 2‐factor. H. Fleischner extended this result to bridgeless graphs of minimum degree at least three by showing that every such graph has a spanning even subgraph. Our main result is that, under the stronger hypothesis of 3‐edge‐connectivity, we can find a spanning even subgraph in which every component has at least five vertices. We show that this is in some sense best possible by constructing an infinite family of 3‐edge‐connected graphs in which every spanning even subgraph has a 5‐cycle as a component. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 37–47, 2009  相似文献   

7.
We describe work on the relationship between the independently-studied polygon-circle graphs and word-representable graphs.A graph G = (V, E) is word-representable if there exists a word w over the alpha-bet V such that letters x and y form a subword of the form xyxy ⋯ or yxyx ⋯ iff xy is an edge in E. Word-representable graphs generalise several well-known and well-studied classes of graphs [S. Kitaev, A Comprehensive Introduction to the Theory of Word-Representable Graphs, Lecture Notes in Computer Science 10396 (2017) 36–67; S. Kitaev, V. Lozin, “Words and Graphs”, Springer, 2015]. It is known that any word-representable graph is k-word-representable, that is, can be represented by a word having exactly k copies of each letter for some k dependent on the graph. Recognising whether a graph is word-representable is NP-complete ([S. Kitaev, V. Lozin, “Words and Graphs”, Springer, 2015, Theorem 4.2.15]). A polygon-circle graph (also known as a spider graph) is the intersection graph of a set of polygons inscribed in a circle [M. Koebe, On a new class of intersection graphs, Ann. Discrete Math. (1992) 141–143]. That is, two vertices of a graph are adjacent if their respective polygons have a non-empty intersection, and the set of polygons that correspond to vertices in this way are said to represent the graph. Recognising whether an input graph is a polygon-circle graph is NP-complete [M. Pergel, Recognition of polygon-circle graphs and graphs of interval filaments is NP-complete, Graph-Theoretic Concepts in Computer Science: 33rd Int. Workshop, Lecture Notes in Computer Science, 4769 (2007) 238–247]. We show that neither of these two classes is included in the other one by showing that the word-representable Petersen graph and crown graphs are not polygon-circle, while the non-word-representable wheel graph W5 is polygon-circle. We also provide a more refined result showing that for any k ≥ 3, there are k-word-representable graphs which are neither (k −1)-word-representable nor polygon-circle.  相似文献   

8.
Nash‐Williams conjectured that a 4‐connected infinite planar graph contains a spanning 2‐way infinite path if, and only if, the deletion of any finite set of vertices results in at most two infinite components. In this article, we prove this conjecture for graphs with no dividing cycles and for graphs with infinitely many vertex disjoint dividing cycles. A cycle in an infinite plane graph is called dividing if both regions of the plane bounded by this cycle contain infinitely many vertices of the graph. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 173–195, 2006  相似文献   

9.
We give a complete characterization of mixed unit interval graphs, the intersection graphs of closed, open, and half‐open unit intervals of the real line. This is a proper superclass of the well‐known unit interval graphs. Our result solves a problem posed by Dourado, Le, Protti, Rautenbach, and Szwarcfiter (Mixed unit interval graphs, Discrete Math 312, 3357–3363 (2012)).  相似文献   

10.
It is well known that every planar graph G is 2‐colorable in such a way that no 3‐cycle of G is monochromatic. In this paper, we prove that G has a 2‐coloring such that no cycle of length 3 or 4 is monochromatic. The complete graph K5 does not admit such a coloring. On the other hand, we extend the result to K5‐minor‐free graphs. There are planar graphs with the property that each of their 2‐colorings has a monochromatic cycle of length 3, 4, or 5. In this sense, our result is best possible. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 25–38, 2004  相似文献   

11.
12.
一类几乎唯一泛圈图   总被引:2,自引:0,他引:2  
设G是阶为n的简单Hamilton图.若存在m(3(?)m相似文献   

13.
《Discrete Mathematics》2020,343(7):111904
An even cycle decomposition of a graph is a partition of its edges into cycles of even length. In 2012, Markström conjectured that the line graph of every 2-connected cubic graph has an even cycle decomposition and proved this conjecture for cubic graphs with oddness at most 2. However, for 2-connected cubic graphs with oddness 2, Markström only considered these graphs with a chordless 2-factor. (A chordless 2-factor of a graph is a 2-factor consisting of only induced cycles.) In this paper, we first construct an infinite family of 2-connected cubic graphs with oddness 2 and without chordless 2-factors. We then give a complete proof of Markström’s result and further prove this conjecture for cubic graphs with oddness 4.  相似文献   

14.
In this paper,we present a complete list of connected arc-transitive graphs of square-free order with valency 11.The list includes the complete bipartite graph K11,11,the normal Cayley graphs of dihedral groups and the graphs associated with the simple group J1 and PSL(2,p),where p is a prime.  相似文献   

15.
In this paper, we first consider graphs allowing symmetry groups which act transitively on edges but not on darts (directed edges). We see that there are two ways in which this can happen and we introduce the terms bi‐transitive and semi‐transitive to describe them. We examine the elementary implications of each condition and consider families of examples; primary among these are the semi‐transitive spider‐graphs PS(k,N;r) and MPS(k,N;r). We show how a product operation can be used to produce larger graphs of each type from smaller ones. We introduce the alternet of a directed graph. This links the two conditions, for each alternet of a semi‐transitive graph (if it has more than one) is a bi‐transitive graph. We show how the alternets can be used to understand the structure of a semi‐transitive graph, and that the action of the group on the set of alternets can be an interesting structure in its own right. We use alternets to define the attachment number of the graph, and the important special cases of tightly attached and loosely attached graphs. In the case of tightly attached graphs, we show an addressing scheme to describe the graph with coordinates. Finally, we use the addressing scheme to complete the classification of tightly attached semi‐transitive graphs of degree 4 begun by Marus?ic? and Praeger. This classification shows that nearly all such graphs are spider‐graphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 45: 1–27, 2004  相似文献   

16.
令$\eta(\Gamma)$和$c(\Gamma)$是符号图$\Gamma$的零度和基本圈数. 一个符号圈拼接图是指每个块都是圈的连通符号图. 本文证明了对任意符号拼接图$\eta(\Gamma)\le c(\Gamma)+1$成立, 并且刻画了等号成立的极图, 推广了王登银等人(2022)在简单圈拼接图上的结果. 此外, 我们证明了任意的符号拼接图$\eta(\Gamma)\neq c(\Gamma)$, 给出了满足$\eta(\Gamma)=c(\Gamma)-1$的符号拼接图的一些性质并刻画处$\eta(\Gamma)=c(\Gamma)-1$的二部符号拼接图.  相似文献   

17.
Path Decomposition of Graphs with Given Path Length   总被引:3,自引:0,他引:3  
A path decomposition of a graph G is a list of paths such that each edge appears in exactly onepath in the list.G is said to admit a {P_l}-decomposition if G can be decomposed into some copies of P_l,whereP_l is a path of length l-1.Similarly,G is said to admit a {P_l,P_k}=decomposition if G can be decomposed intosome copies of P_l or P_k.An k-cycle,denoted by C_k,is a cycle with k vertices.An odd tree is a tree of which allvertices have odd degree.In this paper,it is shown that a connected graph G admits a {P_3,P_4}-decompositionif and only if G is neither a 3-cycle nor an odd tree.This result includes the related result of Yan,Xu andMutu.Moreover,two polynomial algorithms are given to find {P_3}-decomposition and {P_3,P_4}-decompositionof graphs,respectively.Hence,{P_3}-decomposition problem and {P_3,P_4}-decomposition problem of graphs aresolved completely.  相似文献   

18.
A (finite or infinite) graph G is constructible if there exists a well‐ordering ≤ of its vertices such that for every vertex x which is not the smallest element, there is a vertex y < x which is adjacent to x and to every neighbor z of x with z < x. Particular constructible graphs are Helly graphs and connected bridged graphs. In this paper we study a new class of constructible graphs, the class of locally Helly graphs. A graph G is locally Helly if, for every pair (x,y) of vertices of G whose distance is d2, there exists a vertex whose distance to x is d ? 1 and which is adjacent to y and to all neighbors of y whose distance to x is at most d. Helly graphs are locally Helly, and the converse holds for finite graphs. Among different properties we prove that a locally Helly graph is strongly dismantable, hence cop‐win, if and only if it contains no isometric rays. We show that a locally Helly graph G is finitely Helly, that is, every finite family of pairwise non‐disjoint balls of G has a non‐empty intersection. We give a sufficient condition by forbidden subgraphs so that the three concepts of Helly graphs, of locally Helly graphs and of finitely Helly graphs are equivalent. Finally, generalizing different results, in particular those of Bandelt and Chepoi 1 about Helly graphs and bridged graphs, we prove that the Helly number h(G) of the geodesic convexity in a constructible graph G is equal to its clique number ω(G), provided that ω(G) is finite. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 280–298, 2003  相似文献   

19.
We study the family of graphs whose number of primitive cycles equals its cycle rank. It is shown that this family is precisely the family of ring graphs. Then we study the complete intersection property of toric ideals of bipartite graphs and oriented graphs. An interesting application is that complete intersection toric ideals of bipartite graphs correspond to ring graphs and that these ideals are minimally generated by Gröbner bases. We prove that any graph can be oriented such that its toric ideal is a complete intersection with a universal Gröbner basis determined by the cycles. It turns out that bipartite ring graphs are exactly the bipartite graphs that have complete intersection toric ideals for any orientation.  相似文献   

20.
《Discrete Mathematics》2022,345(10):113012
An even cycle decomposition of a graph is a partition of its edges into even cycles. Markström constructed infinitely many 2-connected 4-regular graphs without even cycle decompositions. Má?ajová and Mazák then constructed an infinite family of 3-connected 4-regular graphs without even cycle decompositions. In this note, we further show that there exists an infinite family of 4-connected 4-regular graphs without even cycle decompositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号