首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this paper, by means of the homotopy analysis method (HAM), the solutions of some Schrodinger equations are exactly obtained in the form of convergent Taylor series. The HAM contains the auxiliary parameter ?, that provides a convenient way of controlling the convergent region of series solutions. This analytical method is employed to solve linear and nonlinear examples to obtain the exact solutions. HAM is a powerful and easy-to-use analytic tool for nonlinear problems.  相似文献   

2.
In this paper, an analytic approximation method for highly nonlinear equations, namely the homotopy analysis method (HAM), is employed to solve some backward stochastic differential equations (BSDEs) and forward-backward stochastic differential equations (FBSDEs), including one with high dimensionality (up to 12 dimensions). By means of the HAM, convergent series solutions can be quickly obtained with high accuracy for a FBSDE in a 6-dimensional case, within less than 1 % CPU time used by a currently reported numerical method for the same case [34]. Especially, as dimensionality enlarges, the increase of computational complexity for the HAM is not as dramatic as this numerical method. All of these demonstrate the validity and high efficiency of the HAM for the backward/forward-backward stochastic differential equations in science, engineering, and finance.  相似文献   

3.
In this paper, we apply the homotopy analysis method (HAM) to solve the fractional Volterra’s model for population growth of a species in a closed system. This technique is extended to give solutions for nonlinear fractional integro–differential equations. The whole HAM solution procedure for nonlinear fractional differential equations is established. Further, the accurate analytical approximations are obtained for the first time, which are valid and convergent for all time t. This indicates the validity and great potential of the homotopy analysis method for solving nonlinear fractional integro–differential equations.  相似文献   

4.
The similarity transform for the steady three-dimensional problem of a condensation film on an inclined rotating disk gives a system of nonlinear ordinary differential equations which are analytically solved by applying a newly developed method namely the homotopy analysis method (HAM). The analytic solutions of the system of nonlinear ordinary differential equations are constructed in the series form. The convergence of the obtained series solutions is carefully analyzed. The velocity and temperature profiles are shown and the influence of the Prandtl number on the heat transfer and the Nusselt number is discussed in detail. The validity of our results is verified by numerical results.  相似文献   

5.
In recent work on the area of approximation methods for the solution of nonlinear differential equations, it has been suggested that the so-called generalized Taylor series approach is equivalent to the homotopy analysis method (HAM). In the present paper, we demonstrate that such a view is only valid in very special cases, and in general, the HAM is far more robust. In particular, the equivalence is only valid when the solution is represented as a power series in the independent variable. As has been shown many times, alternative basis functions can greatly improve the error properties of homotopy solutions, and when the base functions are not polynomials or power functions, we no longer have that the generalized Taylor series approach is equivalent to the HAM. In particular, the HAM can be used to obtain solutions which are global (defined on the whole domain) rather than local (defined on some restriction of the domain). The HAM can also be used to obtain non-analytic solutions, which by their nature can not be expressed through the generalized Taylor series approach. We demonstrate these properties of the HAM by consideration of an example where the generalizes Taylor series must always have a finite radius of convergence (and hence limited applicability), while the homotopy solution is valid over the entire infinite domain. We then give a second example for which the exact solution is not analytic, and hence, it will not agree with the generalized Taylor series over the domain. Doing so, we show that the generalized Taylor series approach is not as robust as the HAM, and hence, the HAM is more general. Such results have important implications for how iterative solutions are calculated when approximating solutions to nonlinear differential equations.  相似文献   

6.
The purpose of the present paper is to introduce a method, probably for the first time, to predict the multiplicity of the solutions of nonlinear boundary value problems. This procedure can be easily applied on nonlinear ordinary differential equations with boundary conditions. This method, as will be seen, besides anticipating of multiplicity of the solutions of the nonlinear differential equations, calculates effectively the all branches of the solutions (on the condition that, there exist such solutions for the problem) analytically at the same time. In this manner, for practical use in science and engineering, this method might give new unfamiliar class of solutions which is of fundamental interest and furthermore, the proposed approach convinces to apply it on nonlinear equations by today’s powerful software programs so that it does not need tedious stages of evaluation and can be used without studying the whole theory. In fact, this technique has new point of view to well-known powerful analytical method for nonlinear differential equations namely homotopy analysis method (HAM). Everyone familiar to HAM knows that the convergence-controller parameter plays important role to guarantee the convergence of the solutions of nonlinear differential equations. It is shown that the convergence-controller parameter plays a fundamental role in the prediction of multiplicity of solutions and all branches of solutions are obtained simultaneously by one initial approximation guess, one auxiliary linear operator and one auxiliary function. The validity and reliability of the method is tested by its application to some nonlinear exactly solvable differential equations which is practical in science and engineering.  相似文献   

7.
In this work, the homotopy analysis method (HAM), one of the most effective method, is implemented for finding approximate solutions of the Burger and regularized long wave (RLW) equations. Comparisons are made between the results of the proposed method and homotopy perturbation method (HPM). It illustrates the validity and the great potential of the homotopy analysis method in solving nonlinear partial differential equations.  相似文献   

8.
The traditional scaled boundary finite-element method (SBFEM) is a rather efficient semi-analytical technique widely applied in engineering, which is however valid mostly for linear differential equations. In this paper, the traditional SBFEM is combined with the homotopy analysis method (HAM), an analytic technique for strongly nonlinear problems: a nonlinear equation is first transformed into a series of linear equations by means of the HAM, and then solved by the traditional SBFEM. In this way, the traditional SBFEM is extended to nonlinear differential equations. A nonlinear heat transfer problem is used as an example to show the validity and computational efficiency of this new SBFEM.  相似文献   

9.
This paper aims to present complete analytic solution to heat transfer of a micropolar fluid through a porous medium with radiation. Homotopy analysis method (HAM) has been used to get accurate and complete analytic solution. The analytic solutions of the system of nonlinear ordinary differential equations are constructed in the series form. The convergence of the obtained series solutions is carefully analyzed. The velocity and temperature profiles are shown and the influence of coupling constant, permeability parameter and the radiation parameter on the heat transfer is discussed in detail. The validity of our solutions is verified by the numerical results (fourth-order Runge–Kutta method and shooting method).  相似文献   

10.
Based on the homotopy analysis method (HAM), a general analytical approach for obtaining approximate series solutions to nonlinear two-point boundary value problems in finite domains is proposed. To demonstrate its effectiveness, this approach is applied to solve three nonlinear problems, and the analytical solutions obtained are more accurate than the numerical solutions obtained via the shooting method and the sinc-Galerkin method.  相似文献   

11.
In this paper the SIR and SIS epidemic models in biology are solved by means of an analytic technique for nonlinear problems, namely the homotopy analysis method (HAM). Both of the SIR and SIS models are described by coupled nonlinear differential equations. A one-parameter family of explicit series solutions are obtained for both models. This parameter has no physical meaning but provides us with a simple way to ensure convergent series solutions to the epidemic models. Our analytic results agree well with the numerical ones. This analytic approach is general and can be applied to get convergent series solutions of some other coupled nonlinear differential equations in biology.  相似文献   

12.
强非线性多自由度动力系统主共振同伦分析法研究   总被引:3,自引:1,他引:2  
应用同伦分析方法(HAM)解决强非线性多自由度系统在谐波激振力下的主共振问题.同伦分析方法的有效性独立于所考虑的方程中是否含有的小参数.同伦分析方法提供了一个简单的方法,通过一个辅助参数h-来调节和控制级数解的收敛区域.两个具体算例表明,同伦分析方法得出的结果与修正Linstedt-Poincaré法、增量谐波平衡法的解决方案得出的结果相吻合.  相似文献   

13.
In this article, the approximate solution of nonlinear heat diffusion and heat transfer equation are developed via homotopy analysis method (HAM). This method is a strong and easy‐to‐use analytic tool for investigating nonlinear problems, which does not need small parameters. HAM contains the auxiliary parameter ?, which provides us with a simple way to adjust and control the convergence region of solution series. By suitable choice of the auxiliary parameter ?, we can obtain reasonable solutions for large modulus. In this study, we compare HAM results, with those of homotopy perturbation method and the exact solutions. The first differential equation to be solved is a straight fin with a temperature‐dependent thermal conductivity and the second one is the two‐ and three‐dimensional unsteady diffusion problems. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

14.
In this article, the homotopy analysis method (HAM) has been employed to obtain solutions of a System of nonlinear fractional partial differential equations. This indicates the validity and great potential of the homotopy analysis method for solving system of fractional partial differential equations. The fractional derivative is described in the Caputo sense.  相似文献   

15.
In this work, an analysis is performed to find the series solution of the boundary layer Falkner-Skan equation for wedge. The boundary layer similarity equation takes into account a special form of the chosen magnetic field. The results are obtained by solving the nonlinear differential system by homotopy analysis method (HAM). Numerical solution for the skin friction coefficient is also tabulated and compared with HAM.  相似文献   

16.
In this paper, the homotopy analysis method (HAM) is presented to obtain the numerical solutions for the two kinds of the Painlevé equations with a number of initial conditions. Then, a numerical evaluation and comparison with the results obtained via the HAM are included. It illustrates the validity and the great potential of the HAM in solving Painlevé equations. Although the HAM contains the auxiliary parameter, the convergence region of the series solution can be controlled in a simple way. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
18.
In this paper, we consider the nonlinear boundary value problem (BVP) for the electrohydrodynamic flow of a fluid in an ion drag configuration in a circular cylindrical conduit. We present analytical solutions based on the homotopy analysis method (HAM) for various values of the relevant parameters and discuss the convergence of these solutions. We also compare our results with numerical solutions. The results provide another example of a highly nonlinear problem in which HAM is the only known analytical method that yields convergent solutions for all values of the relevant parameters.  相似文献   

19.
In this paper, the laminar film condensation of saturated stream on an isothermal vertical plate is studied. The boundary layer equations of momentum and thermal energy are reduced to two ordinary differential equations by means of a set of similarity transformations. The problem is then solved analytically using the homotopy analysis method (HAM). The dual solutions are obtained for a range of values of the parameter ηδ. However, it should be noted that the second branch solution of the considered problem has only mathematical meanings. The present work shows the validity and the great potentiality of the proposed technique for the nonlinear problems with multiple solutions.  相似文献   

20.
An analytic method for strongly non-linear problems, namely the homotopy analysis method (HAM), is applied to give convergent series solution of non-similarity boundary-layer flows. As an example, the non-similarity boundary-layer flows over a stretching flat sheet are used to show the validity of this general analytic approach. Without any assumptions of small/large quantities, the corresponding non-linear partial differential equation with variable coefficients is transferred into an infinite number of linear ordinary differential equations with constant coefficients. More importantly, an auxiliary artificial parameter is used to ensure the convergence of the series solution. Different from previous analytic results, our series solutions are convergent and valid for all physical variables in the whole domain of flows. This work illustrates that, by means of the homotopy analysis method, the non-similarity boundary-layer flows can be solved in a similar way like similarity boundary-layer flows. Mathematically, this analytic approach is rather general in principle and can be applied to solve different types of non-linear partial differential equations with variable coefficients in science and engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号