首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
We study the existence of multiple positive solutions for a Neumann problem with singular φ-Laplacian{-(φ(u′))′= λf(u), x ∈(0, 1),u′(0) = 0 = u′(1),where λ is a positive parameter, φ(s) =s/(1-s~2)~(1/2), f ∈ C~1([0, ∞), R), f′(u) 0 for u 0, and for some 0 β θ such that f(u) 0 for u ∈ [0, β)(semipositone) and f(u) 0 for u β.Under some suitable assumptions, we obtain the existence of multiple positive solutions of the above problem by using the quadrature technique. Further, if f ∈ C~2([0, β) ∪(β, ∞), R),f′′(u) ≥ 0 for u ∈ [0, β) and f′′(u) ≤ 0 for u ∈(β, ∞), then there exist exactly 2 n + 1 positive solutions for some interval of λ, which is dependent on n and θ. Moreover, We also give some examples to apply our results.  相似文献   

2.
Let T 1 be an integer, T = {0, 1, 2,..., T- 1}. This paper is concerned with the existence of periodic solutions of the discrete first-order periodic boundary value problems△u(t)- a(t)u(t) = λu(t) + f(u(t- τ(t)))- h(t), t ∈ T,u(0) = u(T),where △u(t) = u(t + 1)- u(t), a : T → R and satisfies∏T-1t=0(1 + a(t)) = 1, τ : T → Z t- τ(t) ∈ T for t ∈ T, f : R → R is continuous and satisfies Landesman-Lazer type condition and h : T → R. The proofs of our main results are based on the Rabinowitz's global bifurcation theorem and Leray-Schauder degree.  相似文献   

3.
Let ∈ :N → R be a parameter function satisfying the condition ∈(k) + k + 1 0and let T∈ :(0,1] →(0,1] be a transformation defined by T∈(x) =-1 +(k + 1)x1 + k-k∈x for x ∈(1k + 1,1k].Under the algorithm T∈,every x ∈(0,1] is attached an expansion,called generalized continued fraction(GCF∈) expansion with parameters by Schweiger.Define the sequence {kn(x)}n≥1of the partial quotients of x by k1(x) = ∈1/x∈ and kn(x) = k1(Tn-1∈(x)) for every n ≥ 2.Under the restriction-k-1 ∈(k) -k,define the set of non-recurring GCF∈expansions as F∈= {x ∈(0,1] :kn+1(x) kn(x) for infinitely many n}.It has been proved by Schweiger that F∈has Lebesgue measure 0.In the present paper,we strengthen this result by showing that{dim H F∈≥12,when ∈(k) =-k-1 + ρ for a constant 0 ρ 1;1s+2≤ dimHF∈≤1s,when ∈(k) =-k-1 +1ksfor any s ≥ 1where dim H denotes the Hausdorff dimension.  相似文献   

4.
Define the incremental fractional Brownian field with parameter H ∈(0, 1) by ZH(τ, s) = BH(s+ τ)- BH(s), where BH(s) is a fractional Brownian motion with Hurst parameter H ∈(0, 1). We firstly derive the exact tail asymptotics for the maximum M *H(T) = max(τ,s)∈[a,b]×[0,T ]ZH(τ, s)/τHof the standardised fractional Brownian motion field, with any fixed 0 a b ∞ and T 0; and we, furthermore, extend the obtained result to the case that T is a positive random variable independent of {BH(s), s≥0}. As a by-product, we obtain the Gumbel limit law for M *H(T) as T →∞.  相似文献   

5.
This paper is concerned with the following n-th ordinary differential equation:{u~(n)(t)=f(t,u(t),u~(1)(t),···,u~(n-1) (t)),for t∈(0,1),u~(i) (0)=0,0 ≤i≤n3,au~(n-2)(0)du~(n-1)(0)=0,cu~(n-2)(1)+du~(n-1)(1)=0,where a,c ∈ R,,≥,such that a~2 + b~2 0 and c~2+d~20,n ≥ 2,f:[0,1] × R → R is a continuous function.Assume that f satisfies one-sided Nagumo condition,the existence theorems of solutions of the boundary value problem for the n-th-order nonlinear differential equations above are established by using Leray-Schauder degree theory,lower and upper solutions,a priori estimate technique.  相似文献   

6.
In this paper we study the source-type solution for the heat equation with convection: ut = △u + ■· ▽un for (x,t) ∈ ST→ RN × (0,T] and u(x,0) = δ(x) for x ∈ RN, where δ(x) denotes Dirac measure in = RN,N 2,n 0 and b = (b1,...,bN) ∈ RN is a vector. It is shown that there exists a critical number pc = N+2 such that the source-type solution to the above problem exists and is unique if 0 N n < pc and there exists a unique similarity source-type solution in the case n = N+1 , while such a solution does not exist...  相似文献   

7.
Let ∈ :N → R be a parameter function satisfying the condition ∈(k) + k + 1 > 0and let T∈ :(0,1] →(0,1] be a transformation defined by T∈(x) =-1 +(k + 1)x1 + k-k∈x for x ∈(1k + 1,1k].Under the algorithm T∈,every x ∈(0,1] is attached an expansion,called generalized continued fraction(GCF∈) expansion with parameters by Schweiger.Define the sequence {kn(x)}n≥1of the partial quotients of x by k1(x) = ∈1/x∈ and kn(x) = k1(Tn-1∈(x)) for every n ≥ 2.Under the restriction-k-1 < ∈(k) <-k,define the set of non-recurring GCF∈expansions as F∈= {x ∈(0,1] :kn+1(x) > kn(x) for infinitely many n}.It has been proved by Schweiger that F∈has Lebesgue measure 0.In the present paper,we strengthen this result by showing that{dim H F∈≥12,when ∈(k) =-k-1 + ρ for a constant 0 < ρ < 1;1s+2≤ dimHF∈≤1s,when ∈(k) =-k-1 +1ksfor any s ≥ 1where dim H denotes the Hausdorff dimension.  相似文献   

8.
1 IntroductionConsider the parameter dependent equationu"+ (λ+ s(μ) ) f( u) -μsinx =0  in ( 0 ,π)u( 0 ) =u(π) =0 ( 1 .1 )whereλ,μ∈R are parameters and f:R→R and S:R→R are smooth odd functions anda) f′( 0 ) =1 ,   b) f ( 0 )≠ 0 ,   c) s( 0 ) =0 ,   d) s′( 0 ) =1 . ( 1 .2 )Let S:u( x)→ u(π-x) ,Γ ={ S,I} ,then ( 1 .1 ) isΓ -equivariant.The equality ( 1 .2 a) isjust a normalization of f at x=0 .Otherwise,one may reseek the parameter x to ensure( 1 .2 a) .To simplify an…  相似文献   

9.
This paper is concerned with the initial-boundary value problem for damped wave equations with a nonlinear convection term in the multi-dimensional half space R n + : u tt u + u t + divf (u) = 0, t > 0, x = (x 1 , x ′ ) ∈ R n + := R + × R n 1 , u(0, x) = u 0 (x) → u + , as x 1 → + ∞ , u t (0, x) = u 1 (x), u(t, 0, x ′ ) = u b , x ′ = (x 2 , x 3 , ··· , x n ) ∈ R n 1 . (I) For the non-degenerate case f ′ 1 (u + ) < 0, it was shown in [10] that the above initialboundary value problem (I) admits a unique global solution u(t, x) which converges to the corresponding planar stationary wave φ(x 1 ) uniformly in x 1 ∈ R + as time tends to infinity provided that the initial perturbation and/or the strength of the stationary wave are sufficiently small. And in [10] Ueda, Nakamura, and Kawashima proved the algebraic decay estimates of the tangential derivatives of the solution u(t, x) for t → + ∞ by using the space-time weighted energy method initiated by Kawashima and Matsumura [5] and improved by Nishihkawa [7]. Moreover, by using the same weighted energy method, an additional algebraic convergence rate in the normal direction was obtained by assuming that the initial perturbation decays algebraically. We note, however, that the analysis in [10] relies heavily on the assumption that f ′ (u) < 0. The main purpose of this paper isdevoted to discussing the case of f ′ 1 (u b ) ≥ 0 and we show that similar results still hold for such a case. Our analysis is based on some delicate energy estimates.  相似文献   

10.
Consider the second order discrete Hamiltonian systems Δ2u(n-1)-L(n)u(n) + ▽W (n, u(n)) = f(n),where n ∈ Z, u ∈ RN and W : Z × RN → R and f : Z → RN are not necessarily periodic in n. Under some comparatively general assumptions on L, W and f , we establish results on the existence of homoclinic orbits. The obtained results successfully generalize those for the scalar case.  相似文献   

11.
本文我们考虑如下二阶奇异差分边值问题\begin{equation*}\begin{cases}-\Delta^{2} u(t-1)=\lambda g(t)f(u) ,\ t\in [1,T]_\mathbb{Z},\\u(0)=0,\\ \Delta u(T)+c(u(T+1))u(T+1)=0,\end{cases}\end{equation*}正解的存在性. 其中, $\lambda>0$, $f:(0,\infty)\rightarrow \mathbb{R}$ 是连续的,且允许在~$0$ 处奇异.通过引入一个新的全连续算子, 我们建立正解的存在性.  相似文献   

12.
In this paper, we study the existence of nodal solutions for the following problem:-(φ_p(x′))′= α(t)φ_p(x~+) + β(t)φ_p(x~-) + ra(t)f(x), 0 t 1,x(0) = x(1) = 0,where φ_p(s) = |s|~(p-2)s, a ∈ C([0, 1],(0, ∞)), x~+= max{x, 0}, x~-=- min{x, 0}, α(t), β(t) ∈C[0, 1]; f ∈ C(R, R), sf(s) 0 for s ≠ 0, and f_0, f_∞∈(0, ∞), where f_0 = lim_|s|→0f(s)/φ_p(s), f_∞ = lim|s|→+∞f(s)/φ_p(s).We use bifurcation techniques and the approximation of connected components to prove our main results.  相似文献   

13.
Let k1, k2 be nonzero integers with(k1, k2) = 1 and k1k2≠-1. Let Rk1,k2(A, n)be the number of solutions of n = k1a1 + k2a2, where a1, a2 ∈ A. Recently, Xiong proved that there is a set A  Z such that Rk1,k2(A, n) = 1 for all n ∈ Z. Let f : Z-→ N0∪ {∞} be a function such that f-1(0) is finite. In this paper, we generalize Xiong's result and prove that there exist uncountably many sets A  Z such that Rk1,k2(A, n) = f(n) for all n ∈ Z.  相似文献   

14.
We prove the existence of positive solutions for the system$$\begin{align*}\begin{cases}-\Delta_{p} u =\lambda a(x){f(v)}{u^{-\alpha}},\qquad x\in \Omega,\\-\Delta_{q} v = \lambda b(x){g(u)}{v^{-\beta}},\qquad x\in \Omega,\\u = v =0, \qquad x\in\partial \Omega,\end{cases}\end{align*}$$where $\Delta_{r}z={\rm div}(|\nabla z|^{r-2}\nabla z)$, for $r>1$ denotes the r-Laplacian operator and $\lambda$ is a positive parameter, $\Omega$ is a bounded domain in $\mathbb{R}^{n}$, $n\geq1$ with sufficiently smooth boundary and $\alpha, \beta \in (0,1).$ Here $ a(x)$ and $ b(x)$ are $C^{1}$ sign-changingfunctions that maybe negative near the boundary and $f,g $ are $C^{1}$ nondecreasing functions, such that $f, g :\ [0,\infty)\to [0,\infty);$ $f(s)>0,$ $g(s)>0$ for $s> 0$, $\lim_{s\to\infty}g(s)=\infty$ and$$\lim_{s\to\infty}\frac{f(Mg(s)^{\frac{1}{q-1}})}{s^{p-1+\alpha}}=0,\qquad \forall M>0.$$We discuss the existence of positive weak solutions when $f$, $g$, $a(x)$ and $b(x)$ satisfy certain additional conditions. We employ the method of sub-supersolution to obtain our results.  相似文献   

15.
The author obtains that the asymptotic relations■hold as x→∞,where the random weightsθ_1,···,θ_(n )are bounded away both from 0 and from∞with no dependency assumptions,independent of the primary random variables X_1,···,X_(n )which have a certain kind of dependence structure and follow non-identically subexponential distributions.In particular,the asymptotic relations remain true whenX_1,···,X_(n )jointly follow a pairwise Sarmanov distribution.  相似文献   

16.
In this paper,\ we study fractional nonlinear Schrodinger equation (FNLS) with periodic boundary condition $$ \textbf{i}u_{t}=-(-\Delta)^{s_{0}} u-V*u-\epsilon f(x)|u|^4u,\ ~~x\in \mathbb{T}, ~~t\in \mathbb{R}, ~~s_{0}\in (\frac12,1),~~~~~~~~~~~~~~~~~~~~~~~~~~~~(0.1) $$ where $(-\Delta)^{s_{0}}$ is the Riesz fractional differentiation defined in [21] and $V*$ is the Fourier multiplier defined by $\widehat{V*u}(n)=V_n\widehat{u}(n),\ V_n\in\left[-1,1\right],$ and $f(x)$ is Gevrey smooth. We prove that for $0\leq|\epsilon|\ll1$ and appropriate $V$,\ the equation (0.1) admits a full dimensional KAM torus in the Gevrey space satisfying $ \frac12e^{-rn^{\theta}}\leq \left|q_n\right|\leq 2e^{-rn^{\theta}}, \theta\in (0,1),$ which generalizes the results given by [8-10] to fractional nonlinear Schrodinger equation.  相似文献   

17.
In this paper,we are interested in the existence of positive solutions for the Kirchhoff type problems{-(a_1 + b_1M_1(∫_?|▽u|~pdx))△_(_pu) = λf(u,v),in ?,-(a_2 + b_2M_2(∫?|▽v|~qdx))△_(_qv) = λg(u,v),in ?,u = v = 0,on ??,where 1 p,q N,M i:R_0~+→ R~+(i = 1,2) are continuous and increasing functions.λ is a parameter,f,g ∈ C~1((0,∞) ×(0,∞)) × C([0,∞) × [0,∞)) are monotone functions such that f_s,f_t,g_s,g_t ≥ 0,and f(0,0) 0,g(0,0) 0(semipositone).Our proof is based on the sub-and super-solutions techniques.  相似文献   

18.
一类连分数的有理逼近   总被引:2,自引:0,他引:2  
设f(n)是非负函数,k,b,s_i,t_i(i=1,2,…)是正常数,研究形如[a_0,a_1,a_2…]=[■]_m~∞=0和[■]_n~∞=1的连分数有理逼近的下界.  相似文献   

19.
该文建立了带权函数$m:[2, N+1]_\mathbb{Z}\to (0,\infty)$的离散固定梁方程$\Delta^4 u(k-2)=\lambda m(k)u(k),\ k\in[2, N+1]_\mathbb{Z}$, $u(1)=\Delta u(1)=0=u(N+2)=\Delta u(N+2)$的特征值结构和相应特征函数的振荡性质, 其中$[2,N+1]_\mathbb{Z}=\{2,3,\cdots,N+1\}$. 作为应用,当非线性项在零点和无穷远处分别满足适当的增长性条件时, 获得了相应非线性问题结点解的全局结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号