首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
完全多部图的无符号Laplacian特征多项式(英文)   总被引:1,自引:0,他引:1  
For a simple graph G,let matrix Q(G)=D(G) + A(G) be it’s signless Laplacian matrix and Q G (λ)=det(λI Q) it’s signless Laplacian characteristic polynomial,where D(G) denotes the diagonal matrix of vertex degrees of G,A(G) denotes its adjacency matrix of G.If all eigenvalues of Q G (λ) are integral,then the graph G is called Q-integral.In this paper,we obtain that the signless Laplacian characteristic polynomials of the complete multi-partite graphs G=K(n1,n2,···,nt).We prove that the complete t-partite graphs K(n,n,···,n)t are Q-integral and give a necessary and sufficient condition for the complete multipartite graphs K(m,···,m)s(n,···,n)t to be Q-integral.We also obtain that the signless Laplacian characteristic polynomials of the complete multipartite graphs K(m,···,m,)s1(n,···,n,)s2(l,···,l)s3.  相似文献   

2.
The signless Laplacian matrix of a graph is the sum of its diagonal matrix of vertex degrees and its adjacency matrix. Li and Feng gave some basic results on the largest eigenvalue and characteristic polynomial of adjacency matrix of a graph in 1979. In this paper, we translate these results into the signless Laplacian matrix of a graph and obtain the similar results.  相似文献   

3.
The energy of a graph G is the sum of the absolute values of the eigenvalues of the adjacency matrix of G. The Laplacian (respectively, the signless Laplacian) energy of G is the sum of the absolute values of the differences between the eigenvalues of the Laplacian (respectively, signless Laplacian) matrix and the arithmetic mean of the vertex degrees of the graph. In this paper, among some results which relate these energies, we point out some bounds to them using the energy of the line graph of G. Most of these bounds are valid for both energies, Laplacian and signless Laplacian. However, we present two new upper bounds on the signless Laplacian which are not upper bounds for the Laplacian energy.  相似文献   

4.
The signless Laplacian spread of a graph is defined to be the difference between the largest eigenvalue and the smallest eigenvalue of its signless Laplacian matrix. In this paper, we determine the first to llth largest signless Laplacian spectral radii in the class of bicyclic graphs with n vertices. Moreover, the unique bicyclic graph with the largest or the second largest signless Laplacian spread among the class of connected bicyclic graphs of order n is determined, respectively.  相似文献   

5.
连通图$G$的距离无符号拉普拉斯矩阵定义为$\mathcal{Q}(G)=Tr(G)+D(G)$, 其中$Tr(G)$和$D(G)$分别为连通图$G$的点传输矩阵和距离矩阵. 图$G$的距离无符号拉普拉斯矩阵的最大特征值称为$G$的距离无符号拉普拉斯谱半径. 本文确定了给定点数的双圈图中具有最大的距离无符号拉普拉斯谱半径的图.  相似文献   

6.
For a (simple) graph G, the signless Laplacian of G is the matrix A(G)+D(G), where A(G) is the adjacency matrix and D(G) is the diagonal matrix of vertex degrees of G; the reduced signless Laplacian of G is the matrix Δ(G)+B(G), where B(G) is the reduced adjacency matrix of G and Δ(G) is the diagonal matrix whose diagonal entries are the common degrees for vertices belonging to the same neighborhood equivalence class of G. A graph is said to be (degree) maximal if it is connected and its degree sequence is not majorized by the degree sequence of any other connected graph. For a maximal graph, we obtain a formula for the characteristic polynomial of its reduced signless Laplacian and use the formula to derive a localization result for its reduced signless Laplacian eigenvalues, and to compare the signless Laplacian spectral radii of two well-known maximal graphs. We also obtain a necessary condition for a maximal graph to have maximal signless Laplacian spectral radius among all connected graphs with given numbers of vertices and edges.  相似文献   

7.
The signless Laplacian spectral radius of a graph G is the largest eigenvalue of its signless Laplacian matrix. In this paper, the first four smallest values of the signless Laplacian spectral radius among all connected graphs with maximum clique of size greater than or equal to 2 are obtained.  相似文献   

8.
In this paper, we establish a sufficient condition on distance signless Laplacian spectral radius for a bipartite graph to be Hamiltonian. We also give two sufficient conditions on distance signless Laplacian spectral radius for a graph to be Hamilton-connected and traceable from every vertex, respectively. Furthermore, we obtain a sufficient condition for a graph to be Hamiltonian in terms of the distance signless Laplacian spectral radius of the complement of a graph G.  相似文献   

9.
Let M be an associated matrix of a graph G (the adjacency, Laplacian and signless Laplacian matrix). Two graphs are said to be cospectral with respect to M if they have the same M spectrum. A graph is said to be determined by M spectrum if there is no other non-isomorphic graph with the same spectrum with respect to M. It is shown that T-shape trees are determined by their Laplacian spectra. Moreover among them those are determined by their adjacency spectra are characterized. In this paper, we identify graphs which are cospectral to a given T-shape tree with respect to the signless Laplacian matrix. Subsequently, T-shape trees which are determined by their signless Laplacian spectra are identified.  相似文献   

10.
假设图G的点集是V(G)={v_1,v_2,…,v_n},用d_(v_i)(G)表示图G中点v_i的度,令A(G)表示G的邻接矩阵,D(G)是对角线上元素等于d_(v_i)(G)的n×n对角矩阵,Q(G)=D(G)+A(G)是G的无符号拉普拉斯矩阵,Q(G)的最大特征值是G的无符号拉普拉斯谱半径.现确定了所有点数为n的三圈图中无符号拉普拉斯谱半径最大的图的结构.  相似文献   

11.
Let G be a simple graph. We first show that ■, where δiand di denote the i-th signless Laplacian eigenvalue and the i-th degree of vertex in G, respectively.Suppose G is a simple and connected graph, then some inequalities on the distance signless Laplacian eigenvalues are obtained by deleting some vertices and some edges from G. In addition, for the distance signless Laplacian spectral radius ρQ(G), we determine the extremal graphs with the minimum ρQ(G) among the trees with given diameter, the unicyclic and bicyclic graphs with given girth, respectively.  相似文献   

12.
There is a deep and interesting connection between the topological properties of a graph and the behaviour of the dynamical system defined on it. We analyse various kind of graphs, with different contrasting connectivity or degree characteristics, using the signless Laplacian matrix. We expose the theoretical results about the eigenvalue of the matrix and how they are related to the dynamical system. Then, we perform numerical computations on real-like graphs and observe the resulting system. Comparing the theoretical and numerical results, we found a perfect consistency. Furthermore, we define a metric which takes into account the “rigidity” of the graph and enables us to relate all together the topological properties of the graph, the signless Laplacian matrix and the dynamical system.  相似文献   

13.
余桂东  周甫  刘琦 《运筹学学报》2017,21(1):118-124
设G是一个简单图,A(G),Q(G)以及Q(G)分别为G的邻接矩阵,无符号拉普拉斯矩阵以及距离无符号拉普拉斯矩阵,其最大特征值分别称为G的谱半径,无符号拉普拉斯谱半径以及距离无符号拉普拉斯谱半径.如果图G中有一条包含G中所有顶点的路,则称这条路为哈密顿路;如果图G含有哈密顿路,则称G为可迹图;如果图G含有从任意一点出发的哈密顿路,则称G从任意一点出发都是可迹的.主要研究利用图G的谱半径,无符号拉普拉斯谱半径,以及距离无符号拉普拉斯谱半径,分别给出图G从任意一点出发都是可迹的充分条件.  相似文献   

14.
We investigate how the least eigenvalue of the signless Laplacian of a graph changes by relocating a bipartite branch from one vertex to another vertex, and minimize the least eigenvalue of the signless Laplacian among the class of connected graphs with fixed order which contains a given non-bipartite graph as an induced subgraph.  相似文献   

15.
Let G=(V,E) be a simple graph. Denote by D(G) the diagonal matrix of its vertex degrees and by A(G) its adjacency matrix. Then the Laplacian matrix of G is L(G)=D(G)-A(G) and the signless Laplacian matrix of G is Q(G)=D(G)+A(G). In this paper we obtain a lower bound on the second largest signless Laplacian eigenvalue and an upper bound on the smallest signless Laplacian eigenvalue of G. In [5], Cvetkovi? et al. have given a series of 30 conjectures on Laplacian eigenvalues and signless Laplacian eigenvalues of G (see also [1]). Here we prove five conjectures.  相似文献   

16.
The smallest eigenvalue of the signless Laplacian   总被引:1,自引:0,他引:1  
Recently the signless Laplacian matrix of graphs has been intensively investigated. While there are many results about the largest eigenvalue of the signless Laplacian, the properties of its smallest eigenvalue are less well studied. The present paper surveys the known results and presents some new ones about the smallest eigenvalue of the signless Laplacian.  相似文献   

17.
A tricyclic graph G =(V(G), E(G)) is a connected and simple graph such that|E(G)| = |V(G)|+2. Let Tg nbe the set of all tricyclic graphs on n vertices with girth g. In this paper, we will show that there exists the unique graph which has the largest signless Laplacian spectral radius among all tricyclic graphs with girth g containing exactly three(resp., four)cycles. And at the same time, we also give an upper bound of the signless Laplacian spectral radius and the extremal graph having the largest signless Laplacian spectral radius in Tg n,where g is even.  相似文献   

18.
设G是一个n阶简单图,q_{1}(G)\geq q_{2}(G)\geq \cdots \geq q_{n}(G)是其无符号拉普拉斯特征值. 图G的无符号拉普拉斯分离度定义为S_{Q}(G)=q_{1}(G)-q_{2}(G). 确定了n阶单圈图和双圈图的最大的无符号拉普拉斯分离度,并分别刻画了相应的极图.  相似文献   

19.
黄鹏  常安 《数学研究》2012,(3):303-309
如果一个图存在定向满足其最大出度△~+不超过最大度△的一半,则通过估计图的半边路径(semi-edge walk)的个数,得到了该图的无符号拉普拉斯谱半径的一个新上界.进而根据D.Goncalves对平面图边分解的结果,得到了平面图无符号拉普拉斯谱半径的一个新上界.  相似文献   

20.
Signless Laplacians of finite graphs   总被引:4,自引:0,他引:4  
We survey properties of spectra of signless Laplacians of graphs and discuss possibilities for developing a spectral theory of graphs based on this matrix. For regular graphs the whole existing theory of spectra of the adjacency matrix and of the Laplacian matrix transfers directly to the signless Laplacian, and so we consider arbitrary graphs with special emphasis on the non-regular case. The results which we survey (old and new) are of two types: (a) results obtained by applying to the signless Laplacian the same reasoning as for corresponding results concerning the adjacency matrix, (b) results obtained indirectly via line graphs. Among other things, we present eigenvalue bounds for several graph invariants, an interpretation of the coefficients of the characteristic polynomial, a theorem on powers of the signless Laplacian and some remarks on star complements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号