首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Trust region(TR)algorithms are a class of recently developed alogrthms for nonlinear optimization.A new family of TR algorithms for unconstrained optimization,which is the extension of the usual TR method,is pressented in this paper.When the objective function is bounded below and continuously differentiable,and the norm of the Hesse approximations increases at most linearly with the iteration number,we prove the global convergence of the algorithms.Limited numerical results are repoted,which indicate that our new TR algorithm is competitive.  相似文献   

2.
In this paper, we propose a new integral global optimization algorithm for finding the solution of continuous minimization problem, and prove the asymptotic convergence of this algorithm. In our modified method we use variable measure integral, importance sampling and main idea of the cross-entropy method to ensure its convergence and efficiency. Numerical results show that the new method is very efficient in some challenging continuous global optimization problems.  相似文献   

3.
In this paper, we study the efficiency issue of inexact Newton-type methods for smooth unconstrained optimization problems under standard assumptions from theoretical point of view by discussing a concrete Newton-PCG algorithm. In order to compare the algorithm with Newton's method, a ratio between the measures of their approximate efficiencies is investigated. Under mild conditions, it is shown that first, this ratio is larger than 1, which implies that the Newton-PCG algorithm is more efficient than Newton's method, and second, this ratio increases when the dimension n of the problem increases and tends to infinity at least at a rate In n/In 2 when n→∞, which implies that in theory the Newton-PCG algorithm is much more efficient for middle- and large-scale problems. These theoretical results are also supported by our preliminary numerical experiments.  相似文献   

4.
In this paper, a new trust region algorithm for nonlinear equality constrained LC^1 optimization problems is given. It obtains a search direction at each iteration not by solving a quadratic programming subproblem with a trust region bound, but by solving a system of linear equations. Since the computational complexity of a QP-Problem is in general much larger than that of a system of linear equations, this method proposed in this paper may reduce the computational complexity and hence improve computational efficiency. Furthermore, it is proved under appropriate assumptions that this algorithm is globally and super-linearly convergent to a solution of the original problem. Some numerical examples are reported, showing the proposed algorithm can be beneficial from a computational point of view.  相似文献   

5.
The essence of the linear search is one-dimension nonlinear minimization problem, which is an important part of the multi-nonlinear optimization, it will be spend the most of operation count for solving optimization problem. To improve the efficiency, we set about from quadratic interpolation, combine the advantage of the quadratic convergence rate of Newton's method and adopt the idea of Anderson-Bjorck extrapolation, then we present a rapidly convergence algorithm and give its corresponding convergence conclusions. Finally we did the numerical experiments with the some well-known test functions for optimization and the application test of the ANN learning examples. The experiment results showed the validity of the algorithm.  相似文献   

6.
Based on the nonmonotone line search technique proposed by Gu and Mo (Appl. Math. Comput. 55, (2008) pp. 2158-2172), a new nonmonotone trust region algorithm is proposed for solving unconstrained optimization problems in this paper. The new algorithm is developed by resetting the ratio ρk for evaluating the trial step dk whenever acceptable. The global and superlinear convergence of the algorithm are proved under suitable conditions. Numerical results show that the new algorithm is effective for solving unconstrained optimization problems.  相似文献   

7.
The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessian approximation matrices of the objective function. It has been proved in the literature that this method has the global and superlinear convergence when the objective function is convex (or even uniformly convex). We propose to solve unconstrained nonconvex optimization problems by a self-scaling BFGS algorithm with nonmonotone linear search. Nonmonotone line search has been recognized in numerical practices as a competitive approach for solving large-scale nonlinear problems. We consider two different nonmonotone line search forms and study the global convergence of these nonmonotone self-scale BFGS algorithms. We prove that, under some weaker condition than that in the literature, both forms of the self-scaling BFGS algorithm are globally convergent for unconstrained nonconvex optimization problems.  相似文献   

8.
A potential function algorithm is constructed for solving inequality constrainted optimization problems. It is proved that the sequences generated by the algorithm converge locally to a Kuhn-Tucker point under some suitable conditions. Finally, numerical results arc reported to show the validity of the algorithm.  相似文献   

9.
In this paper, we consider a method of centers for solving multi-objective programming problems, where the objective functions involved are concave functions and the set of feasible points is convex. The algorithm is defined so that the sub-problems that must be solved during its execution may be solved by finite-step procedures. Conditions are given under which the algorithm generates sequences of feasible points and constraint multiplier vectors that have accumulation points satisfying the KKT conditions. Finally, we establish convergence of the proposed method of centers algorithm for solving multiobjective programming problems.  相似文献   

10.
In this work we introduce two new Barzilai and Borwein-like steps sizes for the classical gradient method for strictly convex quadratic optimization problems.The proposed step sizes employ second-order information in order to obtain faster gradient-type methods.Both step sizes are derived from two unconstrained optimization models that involve approximate information of the Hessian of the objective function.A convergence analysis of the proposed algorithm is provided.Some numerical experiments are performed in order to compare the efficiency and effectiveness of the proposed methods with similar methods in the literature.Experimentally,it is observed that our proposals accelerate the gradient method at nearly no extra computational cost,which makes our proposal a good alternative to solve large-scale problems.  相似文献   

11.
In this paper, we propose a smoothing algorithm for solving the monotone symmetric cone complementarity problems (SCCP for short) with a nonmonotone line search. We show that the nonmonotone algorithm is globally convergent under an assumption that the solution set of the problem concerned is nonempty. Such an assumption is weaker than those given in most existing algorithms for solving optimization problems over symmetric cones. We also prove that the solution obtained by the algorithm is a maximally complementary solution to the monotone SCCP under some assumptions. This work was supported by National Natural Science Foundation of China (Grant Nos. 10571134, 10671010) and Natural Science Foundation of Tianjin (Grant No. 07JCYBJC05200)  相似文献   

12.
In this paper, we present a predictor-corrector smoothing Newton method for solving nonlinear symmetric cone complementarity problems (SCCP) based on the symmetrically perturbed smoothing function. Under a mild assumption, the solution set of the problem concerned is just nonempty, we show that the proposed algorithm is globally and locally quadratic convergent. Also, the algorithm finds a maximally complementary solution to the SCCP. Numerical results for second order cone complementarity problems (SOCCP), a special case of SCCP, show that the proposed algorithm is effective.  相似文献   

13.
The symmetric cone complementarity problem (denoted by SCCP) is a broad class of optimization problems, which contains the semidefinite complementarity problem, the second-order cone complementarity problem, and the nonlinear complementarity problem. In this paper we first extend the smoothing function proposed by Huang et al. (Sci. China 44:1107–1114, 2001) for the nonlinear complementarity problem to the context of symmetric cones and show that it is coercive under suitable assumptions. Based on this smoothing function, a smoothing-type algorithm, which is a modified version of the Qi-Sun-Zhou method (Qi et al. in Math. Program. 87:1–35, 2000), is proposed for solving the SCCP. By using the theory of Euclidean Jordan algebras, we prove that the proposed algorithm is globally and locally quadratically convergent under suitable assumptions. Preliminary numerical results for some second-order cone complementarity problems are reported which indicate that the proposed algorithm is effective.  相似文献   

14.
对称锥互补问题   总被引:1,自引:0,他引:1  
对称锥互补问题是一类均衡优化,包括标准互补问题、二阶锥互补问题和半定互补问题等,近几年,人们借助欧几里德若当代数技术,在对称锥互补问题的研究方面获得了突破性进展并使之逐渐受到重视,本文主要从理论和算法两方面总结和评述这些新成果,同时,列出了相应的重要文献。  相似文献   

15.
In this paper we study a special kind of optimization problems with linear complementarity constraints. First, by a generalized complementarity function and perturbed technique, the discussed problem is transformed into a family of general nonlinear optimization problems containing parameters. And then, using a special penalty function as a merit function, we establish a sequential systems of linear equations (SSLE) algorithm. Three systems of equations solved at each iteration have the same coefficients. Under some suitable conditions, the algorithm is proved to possess not only global convergence, but also strong and superlinear convergence. At the end of the paper, some preliminary numerical experiments are reported.  相似文献   

16.
There recently has been much interest in smoothing Newton method for solving nonlinear complementarity problems. We extend such method to symmetric cone complementarity problems (SCCP). In this paper, we first investigate a one-parametric class of smoothing functions in the context of symmetric cones, which contains the Fischer–Burmeister smoothing function and the CHKS smoothing function as special cases. Then we propose a smoothing Newton method for the SCCP based on the one-parametric class of smoothing functions. For the proposed method, besides the classical step length, we provide a new step length and the global convergence is obtained. Finally, preliminary numerical results are reported, which show the effectiveness of the two step lengthes in the algorithm and provide efficient domains of the parameter for the complementarity problems.  相似文献   

17.
The smoothing algorithms have been successfully applied to solve the symmetric cone complementarity problem (denoted by SCCP), which in general have the global and local superlinear/quadratic convergence if the solution set of the SCCP is nonempty and bounded. Huang, Hu and Han [Science in China Series A: Mathematics, 52: 833–848, 2009] presented a nonmonotone smoothing algorithm for solving the SCCP, whose global convergence is established by just requiring that the solution set of the SCCP is nonempty. In this paper, we propose a new nonmonotone smoothing algorithm for solving the SCCP by modifying the version of Huang-Hu-Han’s algorithm. We prove that the modified nonmonotone smoothing algorithm not only is globally convergent but also has local superlinear/quadratical convergence if the solution set of the SCCP is nonempty. This convergence result is stronger than those obtained by most smoothing-type algorithms. Finally, some numerical results are reported.  相似文献   

18.
本文以处理半无限最优化问题的一般技巧,将一类针对有限极小极大问题的信赖域算法推广到半无限极小极大问题。并证明了新建算法的全局收敛性和超线性收敛性。  相似文献   

19.
基于存档策略的多目标优化的遗传算法及其收敛性分析   总被引:1,自引:0,他引:1  
设计了一种用遗传算法求解多目标优化问题的有效方法——基于存档策略的多目标优化的遗传算法,并讨论了此算法的收敛性.首先给出档案的定义,设计出基于支配关系下的带有存档策略遗传算法,并通过算例检验了算法的有效性;然后引入了两档案间的距离的概念,在此距离定义的基础上证明了算法在概率意义下是收敛的.  相似文献   

20.
研究一类新的求解无约束优化问题的超记忆梯度法,分析了算法的全局收敛性和线性收敛速率.算法利用一种多步曲线搜索准则产生新的迭代点,在每步迭代时同时确定下降方向和步长,并且不用计算和存储矩阵,适于求解大规模优化问题.数值试验表明算法是有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号