首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
Abstract A graph G is k-ordered Hamiltonian,2≤k≤n,if for every ordered sequence S of k distinctvertlces of G,there exists a Hamiltonian cycle that encounters S in the given order. In this article, we provethat if G is a graph on n vertices with degree sum of nonadjacent vertices at least n+3k-9/2,then G is k-orderedHamiltonian for k=3,4,…,[n/19].We also show that the degree sum bound can be reduced to n+2[k/2]-2 ifk(G)≥3k-1/2 or δ(G)≥5k-4.Several known results are generalized.  相似文献   

2.
An invariant σ2(G) of a graph is defined as follows: σ2(G) := min{d(u) + d(v)|u, v ∈V(G),uv ∈ E(G),u ≠ v} is the minimum degree sum of nonadjacent vertices (when G is a complete graph, we define σ2(G) = ∞). Let k, s be integers with k ≥ 2 and s ≥ 4, G be a graph of order n sufficiently large compared with s and k. We show that if σ2(G) ≥ n + k- 1, then for any set of k independent vertices v1,..., vk, G has k vertex-disjoint cycles C1,..., Ck such that |Ci| ≤ s and vi ∈ V(Ci) for all 1 ≤ i ≤ k.
The condition of degree sum σs(G) ≥ n + k - 1 is sharp.  相似文献   

3.
Let σk(G) denote the minimum degree sum of k independent vertices in G and α(G) denote the number of the vertices of a maximum independent set of G. In this paper we prove that if G is a 4-connected graph of order n and σ5(G) 〉 n + 3σ(G) + 11, then G is Hamiltonian.  相似文献   

4.
Let N denote the set of positive integers. The sum graph G^+(S) of a finite subset S belong to N is the graph (S, E) with uv ∈ E if and only if u + v ∈ S. A graph G is said to be a sum graph if it is isomorphic to the sum graph of some S belong to N. By using the set Z of all integers instead of N, we obtain the definition of the integral sum graph. A graph G = (V, E) is a mod sum graph if there exists a positive integer z and a labelling, λ, of the vertices of G with distinct elements from {0, 1, 2,..., z - 1} so that uv ∈ E if and only if the sum, modulo z, of the labels assigned to u and v is the label of a vertex of G. In this paper, we prove that flower tree is integral sum graph. We prove that Dutch m-wind-mill (Dm) is integral sum graph and mod sum graph, and give the sum number of Dm.  相似文献   

5.
A set D of vertices of a graph G = (V, E) is called a dominating set if every vertex of V not in D is adjacent to a vertex of D. In 1996, Reed proved that every graph of order n with minimum degree at least 3 has a dominating set of cardinality at most 3n/8. In this paper we generalize Reed's result. We show that every graph G of order n with minimum degree at least 2 has a dominating set of cardinality at most (3n +IV21)/8, where V2 denotes the set of vertices of degree 2 in G. As an application of the above result, we show that for k ≥ 1, the k-restricted domination number rk (G, γ) ≤ (3n+5k)/8 for all graphs of order n with minimum degree at least 3.  相似文献   

6.
Let G be a connected graph with maximum degree Δ≥ 3.We investigate the upper bound for the chromatic number χγ(G) of the power graph Gγ.It was proved that χγ(G) ≤Δ(Δ-1)γ-1Δ-2+ 1 =:M + 1,where the equality holds if and only if G is a Moore graph.If G is not a Moore graph,and G satisfies one of the following conditions:(1) G is non-regular,(2) the girth g(G) ≤ 2γ- 1,(3)g(G) ≥ 2γ + 2,and the connectivity κ(G) ≥ 3 if γ≥ 3,κ(G) ≥ 4 but g(G) 6 if γ = 2,(4) Δis sufficiently larger than a given number only depending on γ,then χγ(G) ≤ M- 1.By means of the spectral radius λ1(G) of the adjacency matrix of G,it was shown that χ2(G) ≤λ1(G)2+ 1,where the equality holds if and only if G is a star or a Moore graph with diameter 2 and girth 5,and χγ(G)λ1(G)γ+1 ifγ≥3.  相似文献   

7.
A class of antimagic join graphs   总被引:1,自引:0,他引:1  
A labeling f of a graph G is a bijection from its edge set E(G) to the set {1, 2, . . . , |E(G)|}, which is antimagic if for any distinct vertices x and y, the sum of the labels on edges incident to x is different from the sum of the labels on edges incident to y. A graph G is antimagic if G has an f which is antimagic. Hartsfield and Ringel conjectured in 1990 that every connected graph other than K 2 is antimagic. In this paper, we show that if G 1 is an n-vertex graph with minimum degree at least r, and G 2 is an m-vertex graph with maximum degree at most 2r-1 (m ≥ n), then G1 ∨ G2 is antimagic.  相似文献   

8.
A vertex x in a graph G strongly resolves a pair of vertices v, w if there exists a shortest x-w path containing v or a shortest x-v path containing w in G. A set of vertices S■V(G) is a strong resolving set of G if every pair of distinct vertices of G is strongly resolved by some vertex in S. The strong metric dimension of G, denoted by sdim(G), is the minimum cardinality over all strong resolving sets of G. For a connected graph G of order n≥2, we characterize G such that sdim(G) equals 1, n-1, or n-2, respectively. We give a Nordhaus-Gaddum-type result for the strong metric dimension of a graph and its complement: for a graph G and its complement G, each of order n≥4 and connected, we show that 2≤sdim(G)+sdim(G)≤2( n-2). It is readily seen that sdim(G)+sdim(G)=2 if and only if n=4; we show that, when G is a tree or a unicyclic graph, sdim(G)+sdim(G)=2(n 2) if and only if n=5 and G ~=G ~=C5, the cycle on five vertices. For connected graphs G and G of order n≥5, we show that 3≤sdim(G)+sdim(G)≤2(n-3) if G is a tree; we also show that 4≤sdim(G)+sdim(G)≤2(n-3) if G is a unicyclic graph of order n≥6. Furthermore, we characterize graphs G satisfying sdim(G)+sdim(G)=2(n-3) when G is a tree or a unicyclic graph.  相似文献   

9.
A graph G on n vertices is called pancyclic if it contains cycles of everylength k, for 3≤k≤n. A bipartite graph on 2n vertices is called bipancyclicif it contains cycles of every even length 2k, for 2≤k≤n. In this paper,we consider only finite, undirected graphs without loops ormultipie edges. We shall give a new sufficient condition ensuring a Hamiltonian graph tobe pancyclic(or bipancyclic), The main results are the following two theorems.Theorem A. Let G be a Hamiltonian graph of order n. If there exisis a  相似文献   

10.
In 1989, Zhu, Li and Deng introduced the definition of implicit degree of a vertex v in a graph G, denoted by id(v). In this paper, we prove that if G is a 2-connected graph of order n such that id(u) + id(v) ≥ n for each pair of nonadjacent vertices u and v in G, then G is pancyclic unless G is bipartite, or else n = 4r, r ≥ 2 and G is isomorphic to F4r .  相似文献   

11.
 For two vertices u and v of a connected graph G, the set I[u,v] consists of all those vertices lying on a uv shortest path in G, while for a set S of vertices of G, the set I[S] is the union of all sets I[u,v] for u,vS. A set S is convex if I[S]=S. The convexity number con(G) of G is the maximum cardinality of a proper convex set of G. The clique number ω(G) is the maximum cardinality of a clique in G. If G is a connected graph of order n that is not complete, then n≥3 and 2≤ω(G)≤con(G)≤n−1. It is shown that for every triple l,k,n of integers with n≥3 and 2≤lkn−1, there exists a noncomplete connected graph G of order n with ω(G)=l and con(G)=k. Other results on convex numbers are also presented. Received: August 19, 1998 Final version received: May 17, 2000  相似文献   

12.
A k-tree of a graph is a spanning tree with maximum degree at most k. We give sufficient conditions for a graph G to have a k-tree with specified leaves: Let k,s, and n be integers such that k≥2, 0≤sk, and ns+1. Suppose that (1) G is (s+1)-connected and the degree sum of any k independent vertices of G is at least |G|+(k−1)s−1, or (2) G is n-connected and the independence number of G is at most (ns)(k−1)+1. Then for any s specified vertices of G, G has a k-tree containing them as leaves. We also discuss the sharpness of the results. This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Encouragement of Young Scientists, 15740077, 2005 This research was partially supported by the Japan Society for the Promotion of Science for Young Scientists.  相似文献   

13.
It is known that if G is a connected simple graph, then G3 is Hamiltonian (in fact, Hamilton-connected). A simple graph is k-ordered Hamiltonian if for any sequence v1, v2,…,vk of k vertices there is a Hamiltonian cycle containing these vertices in the given order. In this paper, we prove that if k?4, then G⌊3k/2⌋-2 is k-ordered Hamiltonian for every connected graph G on at least k vertices. By considering the case of the path graph Pn, we show that this result is sharp. We also give a lower bound on the power of the cycle Cn that guarantees k-ordered Hamiltonicity.  相似文献   

14.
For a positive integer k, a graph G is k-ordered hamiltonian if for every ordered sequence of k vertices there is a hamiltonian cycle that encounters the vertices of the sequence in the given order. It is shown that if G is a graph of order n with 3 ≤ kn/2, and deg(u) + deg(v) ≥ n + (3k − 9)/2 for every pair u, v of nonadjacent vertices of G, then G is k-ordered hamiltonian. Minimum degree conditions are also given for k-ordered hamiltonicity. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 199–210, 2003  相似文献   

15.
Let k be an integer with k ≥ 2 and G a graph with order n > 4k. We prove that if the minimum degree sum of any two nonadjacent vertices is at least n + k, then G contains a vertex cover with exactly k components such that k−1 of them are chorded 4-cycles. The degree condition is sharp in general.  相似文献   

16.
(3,k)-Factor-Critical Graphs and Toughness   总被引:1,自引:0,他引:1  
 A graph is (r,k)-factor-critical if the removal of any set of k vertices results in a graph with an r-factor (i.e. an r-regular spanning subgraph). Let t(G) denote the toughness of graph G. In this paper, we show that if t(G)≥4, then G is (3,k)-factor-critical for every non-negative integer k such that n+k even, k<2 t(G)−2 and kn−7. Revised: September 21, 1998  相似文献   

17.
A graph, G, is called uniquely Hamiltonian if it contains exactly one Hamilton cycle. We show that if G=(V, E) is uniquely Hamiltonian then Where #(G)=1 if G has even number of vertices and 2 if G has odd number of vertices. It follows that every n-vertex uniquely Hamiltonian graph contains a vertex whose degree is at most c log2n+2 where c=(log23−1)−1≈1.71 thereby improving a bound given by Bondy and Jackson [3].  相似文献   

18.
For a nontrivial connected graph G, let ${c: V(G)\to {{\mathbb N}}}For a nontrivial connected graph G, let c: V(G)? \mathbb N{c: V(G)\to {{\mathbb N}}} be a vertex coloring of G, where adjacent vertices may be colored the same. For a vertex v of G, let N(v) denote the set of vertices adjacent to v. The color sum σ(v) of v is the sum of the colors of the vertices in N(v). If σ(u) ≠ σ(v) for every two adjacent vertices u and v of G, then c is called a sigma coloring of G. The minimum number of colors required in a sigma coloring of a graph G is called its sigma chromatic number σ(G). The sigma chromatic number of a graph G never exceeds its chromatic number χ(G) and for every pair a, b of positive integers with ab, there exists a connected graph G with σ(G) = a and χ(G) = b. There is a connected graph G of order n with σ(G) = k for every pair k, n of positive integers with kn if and only if kn − 1. Several other results concerning sigma chromatic numbers are presented.  相似文献   

19.
A graph of order n is said to be pancyclic if it contains cycles of all lengths from three to n. Let G be a Hamiltonian graph and let x and y be vertices of G that are consecutive on some Hamiltonian cycle in G. Hakimi and Schmeichel showed (J Combin Theory Ser B 45:99–107, 1988) that if d(x) + d(y) ≥ n then either G is pancyclic, G has cycles of all lengths except n − 1 or G is isomorphic to a complete bipartite graph. In this paper, we study the existence of cycles of various lengths in a Hamiltonian graph G given the existence of a pair of vertices that have a high degree sum but are not adjacent on any Hamiltonian cycle in G.  相似文献   

20.
In this paper, we prove that an m-connected graph G on n vertices has a spanning tree with at most k leaves (for k ≥ 2 and m ≥ 1) if every independent set of G with cardinality m + k contains at least one pair of vertices with degree sum at least nk + 1. This is a common generalization of results due to Broersma and Tuinstra and to Win.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号