首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
研究了两个带有参数的n维二次自治系统的自适应同步问题.根据Lyapunov稳定性理论及自适应控制方法得到了两个带有不确定参数非线性系统状态的渐近同步自适应控制方法.同时,识别了不确定参数.通过对两个超混沌系统的理论研究,证明了给定的非线性动力系统同步策略和参数识别的可行性.  相似文献   

2.
讨论了混沌系统的同步问题 .对一类不确定混沌系统 ,提出了一个新的自适应同步方法 ,可使响应系统在自适应控制器的控制下 ,实现与不确定混沌系统的同步 .最后给出了一个设计实例 .  相似文献   

3.
研究分数阶不确定多混沌系统的自适应滑模同步,通过构造滑模面,设计控制器和适应规则,能够满足滑模面的稳定性与到达性,进而得到分数阶不确定多混沌系统取得自适应滑模同步的充分性条件,研究表明:分数阶不确定多混沌系统满足在一定条件下能够取得自适应滑模同步.  相似文献   

4.
针对不确定临界混沌系统,研究了它的有限时间同步和参数识别.基于有限时间李雅谱诺夫稳定性理论以及自适应控制技术,通过分步骤,设置合适的控制器,分别使得在参数具有扰动和参数完全未知的情况下,不确定的驱动系统和响应系统达到有限时间同步;同时,对参数未知的驱动系统,利用有限时间同步识别出未知参数.最后的数值模拟验证了所提出的方法的正确性和有效性.  相似文献   

5.
提出一个新的分数阶混沌系统,该系统含有三个参数,三个非线性项.通过理论分析,给出了分数阶混沌系统存在混沌吸引子的必要条件,通过数值仿真给出了混沌吸引子的图像,接着设计自适应同步控制器和参数自适应律,实现分数阶混沌系统的同步,数值仿真的结果表明设计控制器很好的实现了驱动系统和响应系统的同步.  相似文献   

6.
研究一类分数阶新指数混沌系统的积分滑模同步,给出滑模面和控制器的设计,获得系统取得积分滑模同步的充分条件,研究表明:选择适当的控制器与滑模面,整数阶分数阶新指数混沌系统的驱动-响应系统取得积分滑模同步.  相似文献   

7.
研究了具有不同阶数的受扰不确定混沌系统的降阶修正函数投影同步问题.基于Lyapunov稳定性理论和自适应控制方法,设计了统一的非线性状态反馈控制器和参数更新规则,使得混沌响应系统按照相应的函数尺度因子矩阵和混沌驱动系统的部分状态变量实现同步.方法考虑了实际系统中的模型不确定性和外界扰动,具有较强的实用性和鲁棒性.数值仿真证明了控制方法的有效性.  相似文献   

8.
研究了分数阶双指数混沌系统的自适应滑模同步问题.通过设计滑模函数和控制器,构造了平方Lyapunov函数进行稳定性分析.利用Barbalat引理证明了同步误差渐近趋于零,获得了系统取得自适应滑模同步的充分条件.数值仿真结果表明:选取适当的控制器及与滑模函数,分数阶双指数混沌系统取得自适应滑模同步.  相似文献   

9.
异结构离散型混沌系统的延迟同步   总被引:1,自引:1,他引:0  
以异结构离散型混沌系统为研究对象,设计了一种延迟同步控制器实现了离散型Henon混沌系统和Ikeda混沌系统之间的同步控制.根据稳定性定理,确定了延迟同步控制器的结构以及系统状态变量之间的误差方程.设计的延迟同步控制器对于不同的离散型混沌系统具有统一的形式,可以实现任意异结构离散型混沌系统之间的延迟同步.数值仿真模拟进一步验证了该控制器的有效性.  相似文献   

10.
研究了一类不确定分数阶混沌系统的参数辨识问题,基于Lyapunov稳定性理论和分数阶微积分给出了系统取得混沌同步的两个充分条件,并把该结论应用到特殊情形,研究表明选取适当的滑模面和控制律,不确定分数阶混沌系统可以取得混沌同步.  相似文献   

11.
In this paper, new adaptive synchronous criteria for a general class of n-dimensional non-autonomous chaotic systems with linear and nonlinear feedback controllers are derived. By suitable separation between linear and nonlinear terms of the chaotic system, the phenomenon of stable chaotic synchronization can be achieved using an appropriate adaptive controller of feedback signals. This method can also be generalized to a form for chaotic synchronization or hyper-chaotic synchronization. Based on stability theory on non-autonomous chaotic systems, some simple yet less conservative criteria for global asymptotic synchronization of the autonomous and non-autonomous chaotic systems are derived analytically. Furthermore, the results are applied to some typical chaotic systems such as the Duffing oscillators and the unified chaotic systems, and the numerical simulations are given to verify and also visualize the theoretical results.  相似文献   

12.
In this paper, a novel projective synchronization scheme called adaptive generalized function projective lag synchronization (AGFPLS) is proposed. In the AGFPLS method, the states of two different chaotic systems with fully uncertain parameters are asymptotically lag synchronized up to a desired scaling function matrix. By means of the Lyapunov stability theory, an adaptive controller with corresponding parameter update rule is designed for achieving AGFPLS between two diverse chaotic systems and estimating the unknown parameters. This technique is employed to realize AGFPLS between uncertain Lü chaotic system and uncertain Liu chaotic system, and between Chen hyperchaotic system and Lorenz hyperchaotic system with fully uncertain parameters, respectively. Furthermore, AGFPLS between two different uncertain chaotic systems can still be achieved effectively with the existence of noise perturbation. The corresponding numerical simulations are performed to demonstrate the validity and robustness of the presented synchronization method.  相似文献   

13.
The horizontal platform system (HPS) is a mechanical device that exhibits rich and chaotic dynamics. In this paper, the problem of finite-time synchronization of two non-autonomous chaotic HPSs is investigated. It is assumed that both drive and response systems are disturbed by model uncertainties, external disturbances and fully unknown parameters. Appropriate update laws are proposed to undertake the unknown parameters. Using the update laws and finite-time control theory, a robust adaptive controller is derived to synchronize the two uncertain HPSs in a given finite time. Subsequently, the effects of input nonlinearities are taken into account and a robust adaptive controller is introduced to synchronize the two uncertain HPSs within a finite time. The finite-time stability and convergence of the proposed schemes are analytically proved. Two illustrative examples are presented to show the robustness and applicability of the proposed adaptive finite-time control techniques.  相似文献   

14.
This paper addresses a unified mathematical expression describing a class of chaotic systems, for which the problem of adaptive synchronization between two nearly identical chaotic and hyper-chaotic systems with uncertain parameters is studied. Based on Lyapunov stability theory, a novel adaptive synchronization controller is designed, and the analytic expression of the controller and the adaptive laws of parameters are developed. The controller is simple and systemic, no parameters of the slave system are included in the controller, and, for some specific error systems, the controller can be simplified ulteriorly. New chaotic and a new hyper-chaotic systems with uncertain parameters are taken as the examples to show the effectiveness of the proposed adaptive synchronization method.  相似文献   

15.
In this paper, we investigate the synchronization of non-autonomous chaotic systems with time-varying delay via delayed feedback control. Using a combination of Riccati differential equation approach, Lyapunov-Krasovskii functional, inequality techniques, some sufficient conditions for exponentially stability of the error system are formulated in form of a solution to the standard Riccati differential equation. The designed controller ensures that the synchronization of non-autonomous chaotic systems are proposed via delayed feedback control and intermittent linear state delayed feedback control. Numerical simulations are presented to illustrate the effectiveness of these synchronization criteria.  相似文献   

16.
This paper deals with the finite-time chaos synchronization of the unified chaotic system with uncertain parameters. Based on the finite-time stability theory, a control law is proposed to realize finite-time chaos synchronization for the unified chaotic system with uncertain parameters. The controller is simple, robust and only part parameters are required to be bounded. Simulation results for the Lorenz, Lü and Chen chaotic systems are presented to validate the design and the analysis.  相似文献   

17.
In this paper, the exponential generalized synchronization for a class of coupled systems with uncertainties is defined. A novel and powerful method is proposed to investigate the generalized synchronization based on the adaptive control technique. According to the Lyapunov stability theory, rigorous proof is given for the exponential stability of error system. In comparison with previous schemes, the presented method shortens the synchronization time and is more applicable in practice. Besides, it is shown that the synchronization effect is robust against the uncertain factors. Some typical chaotic and hyper-chaotic systems are taken as examples to illustrate above approach. The corresponding numerical simulations are demonstrated to verify the effectiveness of proposed method.  相似文献   

18.
The new Lorenz-like attractor, reported by Li et al. (2009) [1], includes a product term of system parameters. It can be predicted that chaotic synchronization of this new chaotic system becomes more complicated by taking account of uncertain system parameters. In this paper, the exponential synchronization between two nearly identical Lorenz-like attractors by applying single input controller associated with system parameter update laws is proposed. Unlike multiple control inputs and state variable feedbacks required in chaotic synchronization in the literature, the proposed single input controller includes only one state variable proportional feedback. Two kinds of system parameter update laws are introduced and sufficient conditions are provided to guarantee exponential stability of both synchronous errors and system parameter errors. In addition, numerical simulations are also performed to verify the effectiveness of presented schemes.  相似文献   

19.
随着物理与技术的深入研究,分数阶非线性系统的动力性态及其分数阶混沌系统的同步成为研究的焦点.研究了分数阶Duffing系统的动力性态包括混沌性质,并且由分数阶非线性稳定性准则得到了分数阶非自治系统的混沌同步.特别地,研究了由单一主动控制的分数阶Duffing系统的同步.相应的数值结果演示了方法的有效性.  相似文献   

20.
This paper mainly investigates adaptive generalized function projective synchronization of two different uncertain chaotic systems, which is a further extension of many existing projection synchronization schemes, such as modified projection synchronization, function projective synchronization and so on. On the basis of Lyapunov stability theory, an adaptive controller for the synchronization of two different chaotic systems is designed, and some parameter update laws for estimating the unknown parameters of the systems are also gained. This technique is applied to achieve synchronization between Lorenz and Rössler chaotic systems. The numerical simulations demonstrate the validity and feasibility of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号