首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Considering the positive d-dimensional lattice point Z + d (d ≥ 2) with partial ordering ≤, let {X k: kZ + d } be i.i.d. random variables taking values in a real separable Hilbert space (H, ‖ · ‖) with mean zero and covariance operator Σ, and set $ S_n = \sum\limits_{k \leqslant n} {X_k } $ S_n = \sum\limits_{k \leqslant n} {X_k } , nZ + d . Let σ i 2, i ≥ 1, be the eigenvalues of Σ arranged in the non-increasing order and taking into account the multiplicities. Let l be the dimension of the corresponding eigenspace, and denote the largest eigenvalue of Σ by σ 2. Let logx = ln(xe), x ≥ 0. This paper studies the convergence rates for $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) . We show that when l ≥ 2 and b > −l/2, E[‖X2(log ‖X‖) d−2(log log ‖X‖) b+4] < ∞ implies $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} , where Γ(·) is the Gamma function and $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } .  相似文献   

2.
In this paper we use basic properties of strongly convex functions to obtain new inequalities including Jensen type and Jensen–Mercer type inequalities. Applications for special means are pointed out as well. We also give a Jensen’s operator inequality for strongly convex functions. As a corollary, we improve the Hölder-McCarthy inequality under suitable conditions. More precisely we show that if \(Sp\left( A \right) \subset \left( 1,\infty \right) \), then
$$\begin{aligned} {{\left\langle Ax,x \right\rangle }^{r}}\le \left\langle {{A}^{r}}x,x \right\rangle -\frac{{{r}^{2}}-r}{2}\left( \left\langle {{A}^{2}}x,x \right\rangle -{{\left\langle Ax,x \right\rangle }^{2}} \right) ,\quad r\ge 2 \end{aligned}$$
and if \(Sp\left( A \right) \subset \left( 0,1 \right) \), then
$$\begin{aligned} \left\langle {{A}^{r}}x,x \right\rangle \le {{\left\langle Ax,x \right\rangle }^{r}}+\frac{r-{{r}^{2}}}{2}\left( {{\left\langle Ax,x \right\rangle }^{2}}-\left\langle {{A}^{2}}x,x \right\rangle \right) ,\quad 0<r<1 \end{aligned}$$
for each positive operator A and \(x\in \mathcal {H}\) with \(\left\| x \right\| =1\).
  相似文献   

3.
The Cauchy problem for the higher order equations in the mKdV hierarchy is investigated with data in the spaces $ \hat H_s^r \left( \mathbb{R} \right) $ \hat H_s^r \left( \mathbb{R} \right) defined by the norm
$ \left\| {v_0 } \right\|_{\hat H_s^r \left( \mathbb{R} \right)} : = \left\| {\left\langle \xi \right\rangle ^s \widehat{v_0 }} \right\|_{L_\xi ^{r'} } , \left\langle \xi \right\rangle = \left( {1 + \xi ^2 } \right)^{\frac{1} {2}} , \frac{1} {r} + \frac{1} {{r'}} = 1 $ \left\| {v_0 } \right\|_{\hat H_s^r \left( \mathbb{R} \right)} : = \left\| {\left\langle \xi \right\rangle ^s \widehat{v_0 }} \right\|_{L_\xi ^{r'} } , \left\langle \xi \right\rangle = \left( {1 + \xi ^2 } \right)^{\frac{1} {2}} , \frac{1} {r} + \frac{1} {{r'}} = 1   相似文献   

4.
We prove that max |p′(x)|, where p runs over the set of all algebraic polynomials of degree not higher than n ≥ 3 bounded in modulus by 1 on [−1, 1], is not lower than ( n - 1 ) \mathord
/ \vphantom ( n - 1 ) ?{1 - x2} ?{1 - x2} {{\left( {n - 1} \right)} \mathord{\left/{\vphantom {{\left( {n - 1} \right)} {\sqrt {1 - {x^2}} }}} \right.} {\sqrt {1 - {x^2}} }} for all x ∈ (−1, 1) such that | x | ? èk = 0[ n \mathord/ \vphantom n 2 2 ] [ cos\frac2k + 12( n - 1 )p, cos\frac2k + 12np ] \left| x \right| \in \bigcup\nolimits_{k = 0}^{\left[ {{n \mathord{\left/{\vphantom {n 2}} \right.} 2}} \right]} {\left[ {\cos \frac{{2k + 1}}{{2\left( {n - 1} \right)}}\pi, \cos \frac{{2k + 1}}{{2n}}\pi } \right]} .  相似文献   

5.
Let p be a prime, χ denote the Dirichlet character modulo p, f (x) = a 0 + a 1 x + ... + a k x k is a k-degree polynomial with integral coefficients such that (p, a 0, a 1, ..., a k ) = 1, for any integer m, we study the asymptotic property of
$ \sum\limits_{\chi \ne \chi _0 } {\left| {\sum\limits_{a = 1}^{p - 1} {\chi (a)e\left( {\frac{{f(a)}} {p}} \right)} } \right|^2 \left| {L(1,\chi )} \right|^{2m} } , $ \sum\limits_{\chi \ne \chi _0 } {\left| {\sum\limits_{a = 1}^{p - 1} {\chi (a)e\left( {\frac{{f(a)}} {p}} \right)} } \right|^2 \left| {L(1,\chi )} \right|^{2m} } ,   相似文献   

6.
Let A 0, ... , A n−1 be operators on a separable complex Hilbert space , and let α0,..., α n−1 be positive real numbers such that 1. We prove that for every unitarily invariant norm,
for 2 ≤ p < ∞, and the reverse inequality holds for 0 < p ≤ 2. Moreover, we prove that if ω0,..., ω n−1 are the n roots of unity with ω j = e ij/n , 0 ≤ jn − 1, then for every unitarily invariant norm,
for 2 ≤ p < ∞, and the reverse inequalities hold for 0 < p ≤ 2. These inequalities, which involve n-tuples of operators, lead to natural generalizations and refinements of some of the classical Clarkson inequalities in the Schatten p-norms. Extensions of these inequalities to certain convex and concave functions, including the power functions, are olso optained.   相似文献   

7.
Let {Y i;∞ < i < ∞} be a doubly infinite sequence of identically distributed-mixing random variables and let {a i;∞ < i < ∞} be an absolutely summable sequence of real numbers.In this paper we study the moments of sup(1 ≤ r < 2,p > 0) under the conditions of some moments.  相似文献   

8.
Let X, X1 , X2 , . . . be i.i.d. random variables, and set Sn = X1 +···+Xn , Mn = maxk≤n |Sk|, n ≥1. Let an = o( (n)(1/2)/logn). By using the strong approximation, we prove that, if EX = 0, VarX = σ2 0 and E|X| 2+ε ∞ for some ε 0, then for any r 1, lim ε1/(r-1)(1/2) [ε-2-(r-1)]∞∑n=1 nr-2 P{Mn ≤εσ (π2n/(8log n))(1/2) + an } = 4/π . We also show that the widest a n is o( n(1/2)/logn).  相似文献   

9.
Let E be a normed space, and . Let . We give some exact formulas for 7#x03C4;.  相似文献   

10.
LetP be a conservative and ergodic Markov operator onL 1(X, Σ,m). We give a sufficient condition for the existence of a decompositionA f X such that for 0≦f, gL (A j ) and any two probability measuresμ andν weaker thanm , whereλ is theσ-finite invariant measure (which necessarily exists). Processes recurrent in the sense of Harris are shown to have this decomposition, and an analytic proof of the convergence of is deduced for such processes. This paper is a part of the author’s Ph.D. thesis prepared at the Hebrew University of Jerusalem under the direction of Professor S. R. Foguel, to whom the author is grateful for his helpful advice and kind encouragement.  相似文献   

11.
Let Sk(Γ) be the space of holomorphic Γ-cusp forms f(z) of even weight k ≥ 12 for Γ = SL(2, ), and let Sk(Γ)+ be the set of all Hecke eigenforms from this space with the first Fourier coefficient af(1) = 1. For f ∈ Sk(Γ)+, consider the Hecke L-function L(s, f). Let
It is proved that for large K,
where ε > 0 is arbitrary. For f ∈ Sk(Γ)+, let L(s, sym 2 f) denote the symmetric square L-function. It is proved that as k → ∞ the frequence
converges to a distribution function G(x) at every point of continuity of the latter, and for the corresponding characteristic function an explicit expression is obtained. Bibliography: 17 titles. __________ Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 314, 2004, pp. 221–246.  相似文献   

12.
Let{X,Xn;n≥1} be a sequence of i,i.d, random variables, E X = 0, E X^2 = σ^2 〈 ∞.Set Sn=X1+X2+…+Xn,Mn=max k≤n│Sk│,n≥1.Let an=O(1/loglogn).In this paper,we prove that,for b〉-1,lim ε→0 →^2(b+1)∑n=1^∞ (loglogn)^b/nlogn n^1/2 E{Mn-σ(ε+an)√2nloglogn}+σ2^-b/(b+1)(2b+3)E│N│^2b+3∑k=0^∞ (-1)k/(2k+1)^2b+3 holds if and only if EX=0 and EX^2=σ^2〈∞.  相似文献   

13.
Let A be a locally compact group topologically generated by d elements and let k > d. Consider the action, by precomposition, of Γ = Aut(F k ) on the set of marked, k-generated, dense subgroups $ {D_{k,A}}: = \left\{ {\eta \in {\text{Hom}}\left( {{F_k},A} \right)\left| {\overline {\left\langle {\phi \left( {{F_k}} \right)} \right\rangle } = A} \right.} \right\} Let A be a locally compact group topologically generated by d elements and let k > d. Consider the action, by precomposition, of Γ = Aut(F k ) on the set of marked, k-generated, dense subgroups Dk,A: = { h ? \textHom( Fk,A )| [`( á f( Fk ) ñ )] = A } {D_{k,A}}: = \left\{ {\eta \in {\text{Hom}}\left( {{F_k},A} \right)\left| {\overline {\left\langle {\phi \left( {{F_k}} \right)} \right\rangle } = A} \right.} \right\} . We prove the ergodicity of this action for the following two families of simple, totally disconnected, locally compact groups:
•  A = PSL2(K) where K is a non-Archimedean local field (of characteristic ≠ 2);
•  A = Aut0(T q+1)—the group of orientation-preserving automorphisms of a q + 1 regular tree, for q \geqslant 2.q \geqslant 2.
In contrast, a recent result of Minsky’s shows that the same action fails to be ergodic for A = PSL2(C) and, when k is even, also for A = PSL2(R). Therefore, if k \geqslant 4 k \geqslant 4 is even and K is a local field (with char(K) ≠ 2), the action of Aut(F k ) on Dk,\textPS\textL2(K) {D_{k,{\text{PS}}{{\text{L}}_2}(K)}} is ergodic if and only if K is non-Archimedean. Ergodicity implies that every “measurable property” either holds or fails to hold for almost every k-generated dense subgroup of A.  相似文献   

14.
Riassunto In questo lavoro si prova la regolarità h?lderiana delle derivate, fino all'ordinek, dei minimi locali dei funzionali sotto opportune ipotesi suA ij αβ e sug.
Summary In this paper we prove h?lder-continuity of the derivates, up to orderk, of local minima of functionals under suitable hypotheses forA ij αβ andg.
  相似文献   

15.
By using the continuation theorem of Mawhin's coincidence degree theory, a sufficient condition is derived for the existence of positive periodic solutions for a distributed delay competition modelwhere ri and r2 are continuous w-periodic functions in R+=[0,∞) with ,ai,ci(i =1,2) are positive continuous w-periodic functions in R+=[0,∞),bi (i = 1,2) is nonnegative continuous w-periodic function in R+=[0,∞), w and T are positive constants. Ki,Lt ∈ C([-T,0], (01 88)) and Ki(s)ds = 1,ds - 1. i = 1,2. Some known results are improved and extended.  相似文献   

16.
For real parameters a, b, c, and t, where c is not a nonpositive integer, we determine exactly when the integral operator
is bounded on where is the open unit ball in and dvt (z)  =  (1  −  |z| 2) t dv (z) with dv being volume measure on The characterization remains the same if we replace (1  −  〈zw 〉) c in the integral kernel above by its modulus |1  −  〈zw〉| c.  相似文献   

17.
We prove a non-commutative version of the weak-type (1,1) boundedness of square functions of martingales. More precisely, we prove that there is an absolute constantK with the following property: ifM is a semifinite von Neumann algebra with a faithful normal traceτ and (M n ) n=1 is an increasing filtration of von Neumann subalgebras of (M then for any martingalex= n=1 inL 1(M,τ), adapted to (M n ) n=1 , there is a decomposition into two sequences (x n ) n=1 and (z n ) n=1 withx n=y n+z nfor everyn≥1 and such that . This generalizes a result of Burkholder from classical martingale theory to non-commutative martingales. We also include some applications to martingale Hardy spaces. Supported in part by NSF grant DMS-0096696.  相似文献   

18.
Some integral inequalities for the polar derivative of a polynomial   总被引:1,自引:0,他引:1  
If P(z) is a polynomial of degree n which does not vanish in |z| 1,then it is recently proved by Rather [Jour.Ineq.Pure and Appl.Math.,9 (2008),Issue 4,Art.103] that for every γ 0 and every real or complex number α with |α|≥ 1,{∫02π |D α P(e iθ)| γ dθ}1/γ≤ n(|α| + 1)C γ{∫02π|P(eiθ)| γ dθ}1/γ,C γ ={1/2π∫0 2π|1+eiβ|γdβ}-1/γ,where D α P(z) denotes the polar derivative of P(z) with respect to α.In this paper we prove a result which not only provides a refinement of the above inequality but also gives a result of Aziz and Dawood [J.Approx.Theory,54 (1988),306-313] as a special case.  相似文献   

19.
The aim of the paper is to prove that every fL 1([0,1]) is of the form f = , where j n,k is the characteristic function of the interval [k- 1 / 2 n , k / 2 n ) and Σ n=0Σ k=12n |a n,k | is arbitrarily close to ||f|| (Theorem 2). It is also shown that if μ is any probabilistic Borel measure on [0,1], then for any ɛ > 0 there exists a sequence (b n,k ) n≧0 k=1,...,2n of real numbers such that and for each Lipschitz function g: [0,1] → ℝ (Theorem 3).   相似文献   

20.
In this paper, we discuss the moving-average process Xk = ∑i=-∞ ^∞ ai+kεi, where {εi;-∞ 〈 i 〈 ∞} is a doubly infinite sequence of identically distributed ψ-mixing or negatively associated random variables with mean zeros and finite variances, {ai;-∞ 〈 i 〈 -∞) is an absolutely solutely summable sequence of real numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号