首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Convex relaxations can be used to obtain lower bounds on the optimal objective function value of nonconvex quadratically constrained quadratic programs. However, for some problems, significantly better bounds can be obtained by minimizing the restricted Lagrangian function for a given estimate of the Lagrange multipliers. The difficulty in utilizing Lagrangian duality within a global optimization context is that the restricted Lagrangian is often nonconvex. Minimizing a convex underestimate of the restricted Lagrangian overcomes this difficulty and facilitates the use of Lagrangian duality within a global optimization framework. A branch-and-bound algorithm is presented that relies on these Lagrangian underestimates to provide lower bounds and on the interval Newton method to facilitate convergence in the neighborhood of the global solution. Computational results show that the algorithm compares favorably to the Reformulation–Linearization Technique for problems with a favorable structure.  相似文献   

2.
A two-level decomposition method for nonconvex separable optimization problems with additional local constraints of general inequality type is presented and thoroughly analyzed in the paper. The method is of primal-dual type, based on an augmentation of the Lagrange function. Previous methods of this type were in fact three-level, with adjustment of the Lagrange multipliers at one of the levels. This level is eliminated in the present approach by replacing the multipliers by a formula depending only on primal variables and Kuhn-Tucker multipliers for the local constraints. The primal variables and the Kuhn-Tucker multipliers are together the higher-level variables, which are updated simultaneously. Algorithms for this updating are proposed in the paper, together with their convergence analysis, which gives also indications on how to choose penalty coefficients of the augmented Lagrangian. Finally, numerical examples are presented.  相似文献   

3.
A new decomposition optimization algorithm, called path-following gradient-based decomposition, is proposed to solve separable convex optimization problems. Unlike path-following Newton methods considered in the literature, this algorithm does not require any smoothness assumption on the objective function. This allows us to handle more general classes of problems arising in many real applications than in the path-following Newton methods. The new algorithm is a combination of three techniques, namely smoothing, Lagrangian decomposition and path-following gradient framework. The algorithm decomposes the original problem into smaller subproblems by using dual decomposition and smoothing via self-concordant barriers, updates the dual variables using a path-following gradient method and allows one to solve the subproblems in parallel. Moreover, compared to augmented Lagrangian approaches, our algorithmic parameters are updated automatically without any tuning strategy. We prove the global convergence of the new algorithm and analyze its convergence rate. Then, we modify the proposed algorithm by applying Nesterov’s accelerating scheme to get a new variant which has a better convergence rate than the first algorithm. Finally, we present preliminary numerical tests that confirm the theoretical development.  相似文献   

4.
As is well known, a saddle point for the Lagrangian function, if it exists, provides a solution to a convex programming problem; then, the values of the optimal primal and dual objective functions are equal. However, these results are not valid for nonconvex problems.In this paper, several results are presented on the theory of the generalized Lagrangian function, extended from the classical Lagrangian and the generalized duality program. Theoretical results for convex problems also hold for nonconvex problems by extension of the Lagrangian function. The concept of supporting hypersurfaces is useful to add a geometric interpretation to computational algorithms. This provides a basis to develop a new algorithm.  相似文献   

5.
Several optimization schemes have been known for convex optimization problems. However, numerical algorithms for solving nonconvex optimization problems are still underdeveloped. A significant progress to go beyond convexity was made by considering the class of functions representable as differences of convex functions. In this paper, we introduce a generalized proximal point algorithm to minimize the difference of a nonconvex function and a convex function. We also study convergence results of this algorithm under the main assumption that the objective function satisfies the Kurdyka–?ojasiewicz property.  相似文献   

6.
A rigorous decomposition approach to solve separable mixed-integer nonlinear programs where the participating functions are nonconvex is presented. The proposed algorithms consist of solving an alternating sequence of Relaxed Master Problems (mixed-integer linear program) and two nonlinear programming problems (NLPs). A sequence of valid nondecreasing lower bounds and upper bounds is generated by the algorithms which converge in a finite number of iterations. A Primal Bounding Problem is introduced, which is a convex NLP solved at each iteration to derive valid outer approximations of the nonconvex functions in the continuous space. Two decomposition algorithms are presented in this work. On finite termination, the first yields the global solution to the original nonconvex MINLP and the second finds a rigorous bound to the global solution. Convergence and optimality properties, and refinement of the algorithms for efficient implementation are presented. Finally, numerical results are compared with currently available algorithms for example problems, illuminating the potential benefits of the proposed algorithm.  相似文献   

7.
本文首次讨论了用不动点刻划的不可微多目标优化的最优性必要条件和充分条件,并研究了不动点算法求解此问题的方法及大范围收敛性.为不可微多目标优化研究提供了另一条新的途径.  相似文献   

8.
In this paper, we are concerned with the development of parallel algorithms for solving some classes of nonconvex optimization problems. We present an introductory survey of parallel algorithms that have been used to solve structured problems (partially separable, and large-scale block structured problems), and algorithms based on parallel local searches for solving general nonconvex problems. Indefinite quadratic programming posynomial optimization, and the general global concave minimization problem can be solved using these approaches. In addition, for the minimum concave cost network flow problem, we are going to present new parallel search algorithms for large-scale problems. Computational results of an efficient implementation on a multi-transputer system will be presented.  相似文献   

9.
The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessian approximation matrices of the objective function. It has been proved in the literature that this method has the global and superlinear convergence when the objective function is convex (or even uniformly convex). We propose to solve unconstrained nonconvex optimization problems by a self-scaling BFGS algorithm with nonmonotone linear search. Nonmonotone line search has been recognized in numerical practices as a competitive approach for solving large-scale nonlinear problems. We consider two different nonmonotone line search forms and study the global convergence of these nonmonotone self-scale BFGS algorithms. We prove that, under some weaker condition than that in the literature, both forms of the self-scaling BFGS algorithm are globally convergent for unconstrained nonconvex optimization problems.  相似文献   

10.
A novel nonlinear Lagrangian is presented for constrained optimization problems with both inequality and equality constraints, which is nonlinear with respect to both functions in problem and Lagrange multipliers. The nonlinear Lagrangian inherits the smoothness of the objective and constraint functions and has positive properties. The algorithm on the nonlinear Lagrangian is demonstrated to possess local and linear convergence when the penalty parameter is less than a threshold (the penalty parameter in the penalty method has to approximate zero) under a set of suitable conditions, and be super-linearly convergent when the penalty parameter is decreased following Lagrange multiplier update. Furthermore, the dual problem based on the nonlinear Lagrangian is discussed and some important properties are proposed, which fail to hold for the dual problem based on the classical Lagrangian. At last, the preliminary and comparing numerical results for several typical test problems by using the new nonlinear Lagrangian algorithm and the other two related nonlinear Lagrangian algorithms, are reported, which show that the given nonlinear Lagrangian is promising.  相似文献   

11.
Jia  Xiaoxi  Kanzow  Christian  Mehlitz  Patrick  Wachsmuth  Gerd 《Mathematical Programming》2023,199(1-2):1365-1415

This paper is devoted to the theoretical and numerical investigation of an augmented Lagrangian method for the solution of optimization problems with geometric constraints. Specifically, we study situations where parts of the constraints are nonconvex and possibly complicated, but allow for a fast computation of projections onto this nonconvex set. Typical problem classes which satisfy this requirement are optimization problems with disjunctive constraints (like complementarity or cardinality constraints) as well as optimization problems over sets of matrices which have to satisfy additional rank constraints. The key idea behind our method is to keep these complicated constraints explicitly in the constraints and to penalize only the remaining constraints by an augmented Lagrangian function. The resulting subproblems are then solved with the aid of a problem-tailored nonmonotone projected gradient method. The corresponding convergence theory allows for an inexact solution of these subproblems. Nevertheless, the overall algorithm computes so-called Mordukhovich-stationary points of the original problem under a mild asymptotic regularity condition, which is generally weaker than most of the respective available problem-tailored constraint qualifications. Extensive numerical experiments addressing complementarity- and cardinality-constrained optimization problems as well as a semidefinite reformulation of MAXCUT problems visualize the power of our approach.

  相似文献   

12.
In this paper, we propose a structured trust-region algorithm combining with filter technique to minimize the sum of two general functions with general constraints. Specifically, the new iterates are generated in the Gauss-Seidel type iterative procedure, whose sizes are controlled by a trust-region type parameter. The entries in the filter are a pair: one resulting from feasibility; the other resulting from optimality. The global convergence of the proposed algorithm is proved under some suitable assumptions. Some preliminary numerical results show that our algorithm is potentially efficient for solving general nonconvex optimization problems with separable structure.  相似文献   

13.
This paper describes two new harmony search (HS) meta-heuristic algorithms for engineering optimization problems with continuous design variables. The key difference between these algorithms and traditional (HS) method is in the way of adjusting bandwidth (bw). bw is very important factor for the high efficiency of the harmony search algorithms and can be potentially useful in adjusting convergence rate of algorithms to optimal solution. First algorithm, proposed harmony search (PHS), introduces a new definition of bandwidth (bw). Second algorithm, improving proposed harmony search (IPHS) employs to enhance accuracy and convergence rate of PHS algorithm. In IPHS, non-uniform mutation operation is introduced which is combination of Yang bandwidth and PHS bandwidth. Various engineering optimization problems, including mathematical function minimization problems and structural engineering optimization problems, are presented to demonstrate the effectiveness and robustness of these algorithms. In all cases, the solutions obtained using IPHS are in agreement or better than those obtained from other methods.  相似文献   

14.
针对具有多块可分结构的非凸优化问题提出了一类新的随机Bregman交替方向乘子法,在周期更新规则下, 证明了该算法的渐进收敛性; 在随机更新的规则下, 几乎确定的渐进收敛性得以证明。数值实验结果表明, 该算法可有效训练具有离散结构的支持向量机。  相似文献   

15.
In this paper, we design a numerical algorithm for solving a simple bilevel program where the lower level program is a nonconvex minimization problem with a convex set constraint. We propose to solve a combined problem where the first order condition and the value function are both present in the constraints. Since the value function is in general nonsmooth, the combined problem is in general a nonsmooth and nonconvex optimization problem. We propose a smoothing augmented Lagrangian method for solving a general class of nonsmooth and nonconvex constrained optimization problems. We show that, if the sequence of penalty parameters is bounded, then any accumulation point is a Karush-Kuch-Tucker (KKT) point of the nonsmooth optimization problem. The smoothing augmented Lagrangian method is used to solve the combined problem. Numerical experiments show that the algorithm is efficient for solving the simple bilevel program.  相似文献   

16.
A new algorithm for solving large-scale convex optimization problems with a separable objective function is proposed. The basic idea is to combine three techniques: Lagrangian dual decomposition, excessive gap and smoothing. The main advantage of this algorithm is that it automatically and simultaneously updates the smoothness parameters which significantly improves its performance. The convergence of the algorithm is proved under weak conditions imposed on the original problem. The rate of convergence is $O(\frac {1}{k})$ , where k is the iteration counter. In the second part of the paper, the proposed algorithm is coupled with a dual scheme to construct a switching variant in a dual decomposition framework. We discuss implementation issues and make a theoretical comparison. Numerical examples confirm the theoretical results.  相似文献   

17.
We modify a Lagrangian penalty function method proposed in [4] for constrained convex mathematical programming problems in order to obtain a geometric rate of convergence. For nonconvex problems we show that a special case of the algorithm in the above paper is still convergent without coercivity and convexity assumptions.On leave from the Institute of Mathematics, Hanoi, by a grant from Alexander-von-Humboldt-Stiftung.  相似文献   

18.
This paper focuses on the study of a class of nonlinear Lagrangians for solving nonconvex second order cone programming problems. The nonlinear Lagrangians are generated by Löwner operators associated with convex real-valued functions. A set of conditions on the convex real-valued functions are proposed to guarantee the convergence of nonlinear Lagrangian algorithms. These conditions are satisfied by well-known nonlinear Lagrangians appeared in the literature. The convergence properties for the nonlinear Lagrange method are discussed when subproblems are assumed to be solved exactly and inexactly, respectively. The convergence theorems show that, under the second order sufficient conditions with sigma-term and the strict constraint nondegeneracy condition, the algorithm based on any of nonlinear Lagrangians in the class is locally convergent when the penalty parameter is less than a threshold and the error bound of solution is proportional to the penalty parameter. Compared to the analysis in nonlinear Lagrangian methods for nonlinear programming, we have to deal with the sigma term in the convergence analysis. Finally, we report numerical results by using modified Frisch’s function, modified Carroll’s function and the Log-Sigmoid function.  相似文献   

19.
A deterministic global optimization method is developed for a class of discontinuous functions. McCormick’s method to obtain relaxations of nonconvex functions is extended to discontinuous factorable functions by representing a discontinuity with a step function. The properties of the relaxations are analyzed in detail; in particular, convergence of the relaxations to the function is established given some assumptions on the bounds derived from interval arithmetic. The obtained convex relaxations are used in a branch-and-bound scheme to formulate lower bounding problems. Furthermore, convergence of the branch-and-bound algorithm for discontinuous functions is analyzed and assumptions are derived to guarantee convergence. A key advantage of the proposed method over reformulating the discontinuous problem as a MINLP or MPEC is avoiding the increase in problem size that slows global optimization. Several numerical examples for the global optimization of functions with discontinuities are presented, including ones taken from process design and equipment sizing as well as discrete-time hybrid systems.  相似文献   

20.
The recently proposed quasi-Newton method for constrained optimization has very attractive local convergence properties. To force global convergnce of the method, a descent method which uses Zangwill's penalty function and an exact line search has been proposed by Han. In this paper a new method which adopts a differentiable penalty function and an approximate line is presented. The proposed penalty function has the form of the augmented Lagrangian function. An algorithm for updating parameters which appear in the penalty function is described. Global convergence of the given method is proved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号