首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
For a chaotic system with specified structure, all unknown model parameters can be simultaneously identified by a simple combination of adaptive scheme and linear feedback. Furthermore, based on the Lyapunov stability theory, a sufficient condition for chaos synchronization is derived analytically, which guarantees that the system with fully uncertain parameters and the controlled system achieve chaos synchronization. Numerical simulations are presented for demonstration.  相似文献   

2.
Synchronization of Genesio chaotic system via backstepping approach   总被引:9,自引:0,他引:9  
Backstepping design is proposed for synchronization of Genesio chaotic system. Firstly, the control problem for the chaos synchronization of nominal Genesio systems without unknown parameters is considered. Next, an adaptive backstepping control law is derived to make the error signals between drive Genesio system and response Genesio system with an uncertain parameter asymptotically synchronized. Finally, the approach is extended to the synchronization problem for the system with three unknown parameters. The stability analysis in this article is proved by using a well-known Lyapunov stability theorem. Note that the approach provided here needs only a single controller to realize the synchronization. Two numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme.  相似文献   

3.
This paper deals with the finite-time chaos synchronization of the unified chaotic system with uncertain parameters. Based on the finite-time stability theory, a control law is proposed to realize finite-time chaos synchronization for the unified chaotic system with uncertain parameters. The controller is simple, robust and only part parameters are required to be bounded. Simulation results for the Lorenz, Lü and Chen chaotic systems are presented to validate the design and the analysis.  相似文献   

4.
Chaos and chaos synchronization of the centrifugal flywheel governor system are studied in this paper. By mechanics analyzing, the dynamical equation of the centrifugal flywheel governor system is established. Because of the non-linear terms of the system, the system exhibits both regular and chaotic motions. The characteristic of chaotic attractors of the system is presented by the phase portraits and power spectra. The evolution from Hopf bifurcation to chaos is shown by the bifurcation diagrams and a series of Poincaré sections under different sets of system parameters, and the bifurcation diagrams are verified by the related Lyapunov exponent spectra. This letter addresses control for the chaos synchronization of feedback control laws in two coupled non-autonomous chaotic systems with three different coupling terms, which is demonstrated and verified by Lyapunov exponent spectra and phase portraits. Finally, numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme.  相似文献   

5.
Chaotic synchronization of fractional-order Chua’s system is further studied. An algorithm for numerical solution of fractional-order differential equations is presented; the chaos in a fractional-order Chua system with some parameters is discussed. The scheme of synchronization system consist of fractional-order Chua’s system is constructed. The synchronization conditions are investigated theoretically. And the synchronization thresholds are discussed by utilizing bifurcation graphs.  相似文献   

6.
This paper proposes two schemes of synchronization of two four-scorll chaotic attractor, a simple global synchronization and adaptive synchronization in the presence of unknown system parameters. Based on Lyapunov stability theory and matrix measure, a simple generic criterion is derived for global synchronization of four-scorll chaotic attractor system with a unidirectional linear error feedback coupling. This methods are applicable to a large class of chaotic systems where only a few algebraic inequalities are involved. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization method.  相似文献   

7.
In this article, the adaptive chaos synchronization technique is implemented by an electronic circuit and applied to the hyperchaotic system proposed by Chen et al. We consider the more realistic and practical case where all the parameters of the master system are unknowns. We propose and implement an electronic circuit that performs the estimation of the unknown parameters and the updating of the parameters of the slave system automatically, and hence it achieves the synchronization. To the best of our knowledge, this is the first attempt to implement a circuit that estimates the values of the unknown parameters of chaotic system and achieves synchronization. The proposed circuit has a variety of suitable real applications related to chaos encryption and cryptography. The outputs of the implemented circuits and numerical simulation results are shown to view the performance of the synchronized system and the proposed circuit.  相似文献   

8.
Synchronization of chaos presents many challenges for controller design. The novel notion of exerting concurrent control in the joint time-frequency domain is applied to formulate a chaos synchronization scheme that requires no linearization or heuristic trial-and-errors for nonlinear controller design. The concept is conceived through recognizing the basic attributes inherent of all chaotic systems, including the simultaneous deterioration of dynamics in both the time and frequency domains when bifurcates, nonstationarity, and sensitivity to initial conditions. Having its philosophical bases established in simultaneous time-frequency control, on-line system identification, and adaptive control, the chaos synchronization scheme incorporates multiresolution analysis, adaptive filters, and filtered-x Least Mean Square algorithm as its physical features. Without A priori knowledge of the driven system parameters, synchronization is invariably achieved regardless of the initial and forcing conditions the response system is subjected to. In addition, driving and driven trajectories are seen robustly synchronized with negligible errors in spite of the infliction of high frequency noise.  相似文献   

9.
In this paper, we investigate the ultimate bound and positively invariant set for a new chaotic system via the generalized Lyapunov function theory. For this system, we derive a three-dimensional ellipsoidal ultimate bound and positively invariant set. In addition, the two-dimensional bound with respect to x-z and y-z are established. Finally, the result is applied to the study of completely chaos synchronization, an exact threshold is given with the system parameters. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme.  相似文献   

10.
Adaptive synchronization of a hyperchaotic system with uncertain parameter   总被引:1,自引:0,他引:1  
This paper addresses the synchronization problem of two Lü hyperchaotic dynamical systems in the presence of unknown system parameters. Based on Lyapunov stability theory an adaptive control law is derived to make the states of two identical Lü hyperchaotic systems with unknown system parameters asymptotically synchronized. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization schemes.  相似文献   

11.
Based on the Lyapunov stabilization theory and matrix measure, this paper proposes some simple generic criterions of global chaos synchronization between two coupled time-varying chaotic systems from a unidirectional linear error feedback coupling approach. These simple criterions are applicable to some typical chaotic systems with different types of nonlinearity, such as the original Chua’s circuit and the Rössler chaotic system. The coupling parameters are determined according to the new criterion so as to ensure the coupled systems’ global chaos synchronization.  相似文献   

12.
Chaos, control, anticontrol and synchronization of chaos for an autonomous rotational machine system with a hexagonal centrifugal governor and spring for which time-delay effect is considered are studied in the paper. By applying numerical results, phase diagram and power spectrum are presented to observe periodic and chaotic motions. Linear feedback control and adaptive control algorithm are used to control chaos effectively. Linear and nonlinear feedback synchronization and phase synchronization for the coupled systems are presented. Finally, anticontrol of chaos for this system is also studied.  相似文献   

13.
This work presents chaos synchronization between two different hyperchaotic systems using adaptive control. The sufficient conditions for achieving synchronization of two high dimensional chaotic systems are derived based on Lyapunov stability theory, and an adaptive control law and a parameter update rule for unknown parameters are given such that generalized Henon–Heiles system is controlled to be hyperchaotic Chen system. Theoretical analysis and numerical simulations are shown to verify the results.  相似文献   

14.
This paper is devoted to study the dynamical behavior of a modified Autonomous Van der Pol-Duffing (ADVP) circuit when its nonlinear element is replaced by a flux controlled memristor. The bifurcation diagrams, Lyapunov exponents, and phase portraits of the state variables are presented. Then, the chaos which appears at certain values of the system’s parameters is controlled using linear feedback control. Finally, the synchronization between two chaotic modified ADVP circuits is achieved in the case of fully unknown parameters of the system using adaptive synchronization.  相似文献   

15.
This work presents a direct approach to design stabilizing controller based on a special matrix structure to synchronize chaotic systems and extends the approach to synchronize fractional chaotic systems. With this method, chaos synchronization is implemented in Lorenz chaotic systems with known parameters and the same to Lorenz chaotic systems with unknown parameters. Especially, fractional Lorenz chaotic system with unknown parameters is synchronized by fractional Chen chaotic system too. Numerical simulations confirm the effectiveness of the method proposed.  相似文献   

16.
In this article, based on the stability theory of fractional‐order systems, chaos synchronization is achieved in the fractional‐order modified Van der Pol–Duffing system via a new linear control approach. A fractional backstepping controller is also designed to achieve chaos synchronization in the proposed system. Takagi‐Sugeno fuzzy models‐based are also presented to achieve chaos synchronization in the fractional‐order modified Van der Pol–Duffing system via linear control technique. Numerical simulations are used to verify the effectiveness of the synchronization schemes. © 2015 Wiley Periodicals, Inc. Complexity 21: 116–124, 2016  相似文献   

17.
We study the chaos control and the function projective synchronization of a fractional-order T-system and Lorenz chaotic system using the backstepping method. Based on stability theory, we consider the condition for the local stability of nonlinear three-dimensional commensurate fractional-order system. Using the feedback control method, we control the chaos in the considered fractional-order T-system. We simulate the function projective synchronization between the fractional-order T-system and Lorenz system numerically using MATLAB and depict the results with plots.  相似文献   

18.
This work presents chaos synchronization between two different chaotic systems by using active control. This technique is applied to achieve chaos synchronization for a new system and each of the dynamical systems Lorenz, Chen and Lü. Numerical simulations are also shown to verify the results.  相似文献   

19.
This paper investigates the chaos synchronization of two hyperchaotic systems. Based on Lasalle invariance principle, adaptive schemes are derived to make two unidirectional coupling and mutual coupling hyperchaotic systems asymptotically synchronized whether the parameters are given or uncertain, and unknown parameters are identified simultaneously in the process of synchronization. Numerical simulations of hyperchaotic Chen systems are presented to show the effectiveness of the proposed chaos synchronization schemes.  相似文献   

20.
Chaos synchronization, as an important topic, has become an active research subject in nonlinear science. Over the past two decades, chaos synchronization between nonlinear systems has been extensively studied, and many types of synchronization have been announced. This paper introduces another novel type of chaos synchronization – full state hybrid projective synchronization (FSHPS), which includes complete synchronization, anti-synchronization and projective synchronization as its special item. Based on the Lyapunov’s direct method, the general FSHPS scheme is given and illustrated with Lorenz chaotic system and hyperchaotic Chen system as examples. Numerical simulations are used to verify the effectiveness of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号