首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
In this paper we prove that inAG(2,q) a set of type (0,n)1 exists if and only if an algebraic systemS admits solutions inGF(q 2).  相似文献   

2.
Let G be a graph of order p and size q with loops allowed. A bijective function ${f:V(G)\cup E(G)\rightarrow \{i\}_{i=1}^{p+q}}$ is an edge-magic labeling of G if the sum ${f(u)+f(uv)+f(v)=k}$ is independent of the choice of the edge uv. The constant k is called either the valence, the magic weight or the magic sum of the labeling f. If a graph admits an edge-magic labeling, then it is called an edge-magic graph. Furthermore, if the function f meets the extra condition that ${f(V(G))=\{i\}_{i=1}^{p}}$ then f is called a super edge-magic labeling and G is called a super edge-magic graph. A digraph D admits a labeling, namely l, if its underlying graph, und(D) admits l. In this paper, we introduce a new construction of super edge-magic labelings which are related to the classical jump of the knight on the chess game. We also use super edge-magic labelings of digraphs together with a generalization of the Kronecker product to get edge-magic labelings of some families of graphs.  相似文献   

3.
A Γ-distance magic labeling of a graph G = (V, E) with |V| = n is a bijection ? from V to an Abelian group Γ of order n such that the weight $w(x) = \sum\nolimits_{y \in N_G (x)} {\ell (y)}$ of every vertex xV is equal to the same element µ ∈ Γ, called the magic constant. A graph G is called a group distance magic graph if there exists a Γ-distance magic labeling for every Abelian group Γ of order |V(G)|. In this paper we give necessary and sufficient conditions for complete k-partite graphs of odd order p to be ? p -distance magic. Moreover we show that if p ≡ 2 (mod 4) and k is even, then there does not exist a group Γ of order p such that there exists a Γ-distance labeling for a k-partite complete graph of order p. We also prove that K m,n is a group distance magic graph if and only if n + m ? 2 (mod 4).  相似文献   

4.
A graph is called magic (supermagic) if it admits a labelling of the edges by pairwise different (and consecutive) integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In the paper, we characterize magic circulant graphs and 3-regular supermagic circulant graphs. We establish some conditions for supermagic circulant graphs.  相似文献   

5.
对维林金系统{ψ,n≥1}和0<α< 1定义极大算子σ^α*f:= sup │σ^αnf│,其中σ^αnf是函数f的(C,α)平均值.证明了算子σ^α*是(p,p)型(1〈P〈∞)和弱(1,1)型.另外‖σ^α*f‖1≤C‖f‖H1,,其中H1是Hardy空间.利用上述结果,证明了对任一可积函数f,σ^αnf几乎处处收敛于f.  相似文献   

6.
We investigate the category of cubical sets with some additional degeneracies called connections. We prove that the realisation of a cubical set with connections is independent, up to homotopy, of whether we collapse those extra degeneracies or not and that any cubical set which is Kan admits connections. Using this type of cubical sets we define the cubical classifying space of a category and prove that this is equivalent to the simplicial one.  相似文献   

7.
By treating regular (or associative), pandiagonal, and most-perfect (MP) magic squares as matrices, we find a number of interesting properties and relationships. In addition, we introduce a new class of quasi-regular (QR) magic squares which includes regular and MP magic squares. These four classes of magic squares are called “special”.We prove that QR magic squares have signed pairs of eigenvalues just as do regular magic squares according to a well-known theorem of Mattingly. This leads to the fact that odd powers of QR magic squares are magic squares which also can be established directly from the QR condition. Since all pandiagonal magic squares of order 4 are MP, they are QR. Also, we show that all pandiagonal magic squares of order 5 are QR but higher-order ones may or may not be. In addition, we prove that odd powers of MP magic squares are MP. A simple proof is given of the known result that natural (or classic) pandiagonal and regular magic squares of singly-even order do not exist.We consider the reflection of a regular magic square about its horizontal or vertical centerline and prove that signed pairs of eigenvalues of the reflected square differ from those of the original square by the factor i. A similar result is found for MP magic squares and a subclass of QR magic squares.The paper begins with mathematical definitions of the special magic squares. Then, a number of useful matrix transformations between them are presented. Next, following a brief summary of the spectral analysis of matrices, the spectra of these special magic squares are considered and the results mentioned above are established. A few numerical examples are presented to illustrate our results.  相似文献   

8.
The well-known phenomenon of ripples on roads has its modern counterpart in ripple patterns on railroads and polygonization of wheels on state-of-the-art lightrail streetcars. Here we study an idealized mechanical suspension model for the vibrational frequency response of a buggy with a nonrigid body (typically, an aluminium chassis and coach). The finite flexural rigidity of the body is an important novel feature. Since the essential physics is described by only one extra material parameter (viz. the stiffness coefficient), the model retains its basic simplicity and can still be analysed exactly. The dynamics (i.e., the Lagrangian equations of motion) are solved in the frequency domain. The motion on a distorted surface is treated as a nonholonomic constraint. Thus we analytically calculate spectra, e.g., the wheel spectrum. This reveals a new, significant wheel resonance (typically near 30–35 Hz), which is confirmed by means of a novel analysis of the wheel’s lift force (taking care of traction forces). At moderate city speeds this resonance agrees with recently observed characteristic ripple patterns on lightrail tracks, with wavelengths of approximately 10–20 cm (amplitudes of the order of a millimeter), and correspondingly polygonized wheels.  相似文献   

9.
C. Balbuena 《Discrete Mathematics》2006,306(16):1817-1829
Let G be a graph of order n and size e. A vertex-magic total labeling is an assignment of the integers 1,2,…,n+e to the vertices and the edges of G, so that at each vertex, the vertex label and the labels on the edges incident at that vertex, add to a fixed constant, called the magic number of G. Such a labeling is a-vertex consecutive magic if the set of the labels of the vertices is {a+1,a+2,…,a+n}, and is b-edge consecutive magic if the set of labels of the edges is {b+1,b+2,…,b+e}. In this paper we prove that if an a-vertex consecutive magic graph has isolated vertices then the order and the size satisfy (n-1)2+n2=(2e+1)2. Moreover, we show that every tree with even order is not a-vertex consecutive magic and, if a tree of odd order is a-vertex consecutive then a=n-1. Furthermore, we show that every a-vertex consecutive magic graph has minimum degree at least two if a=0, or both and 2a?e, and the minimum degree is at least three if both and 2a?e. Finally, we state analogous results for b-edge consecutive magic graphs.  相似文献   

10.

We prove a decomposition result for analytic spaces all of whose geodesics are contained in compact flats. Namely, we prove that a Riemannian manifold is such a space if and only if it admits a (finite) cover which splits as the product of a flat torus with simply connected factors which are either symmetric (of the compact type) or spaces of closed geodesics.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号