首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The connected-(1, 2)-or-(2, 1)-out-of-(mn):F lattice system is included by the connected-X-out-of-(mn):F lattice system defined by Boehme et al. [Boehme, T.K., Kossow, A., Preuss, W., 1992. A generalization of consecutive-k-out-of-n:F system. IEEE Transactions on Reliability 41, 451–457]. This system fails if and only if at least one subset of connected failed components occurs which includes at least a (1, 2)-matrix (that is, a row and two columns) or a (2, 1)-matrix(that is, two rows and a column) of failed components. This system is applied to two-dimensional network problems with adjacent constraints, and various systems, for example, a supervision system, etc.  相似文献   

2.
We present on-line algorithms to minimize the makespan on a single batch processing machine. We consider a parallel batching machine that can process up to b jobs simultaneously. Jobs in the same batch complete at the same time. Such a model of a batch processing machine has been motivated by burn-in ovens in final testing stage of semiconductor manufacturing. We deal with the on-line scheduling problem when jobs arrive over time. We consider a set of independent jobs. Their number is not known in advance. Each job is available at its release date and its processing requirement is not known in advance. This general problem with infinite machine capacity is noted 1∣p − batch, rj, b = ∞∣Cmax. Deterministic algorithms that do not insert idle-times in the schedule cannot be better than 2-competitive and a simple rule based on LPT achieved this bound [Z. Liu, W. Yu, Scheduling one batch processor subject to job release dates, Discrete Applied Mathematics 105 (2000) 129–136]. If we are allowed to postpone start of jobs, the performance guarantee can be improved to 1.618. We provide a simpler proof of this best known lower bound for bounded and unbounded batch sizes. We then present deterministic algorithms that are best possible for the problem with unbounded batch size (i.e., b = ∞) and agreeable processing times (i.e., there cannot exist an on-line algorithm with a better performance guarantee). We then propose another algorithm that leads to a best possible algorithm for the general problem with unbounded batch size. This algorithm improves the best known on-line algorithm (i.e. [G. Zhang, X. Cai, C.K. Wong, On-line algorithms for minimizing makespan on batch processing machines, Naval Research Logistics 48 (2001) 241–258]) in the sense that it produces a shortest makespan while ensuring the same worst-case performance guarantee.  相似文献   

3.
Susceptible (S) – exposed (E) – infectious (I) – quarantined (Q) – recovered (R) model for the transmission of malicious objects in computer network is formulated. Thresholds, equilibria, and their stability are also found with cyber mass action incidence. Threshold Rcq determines the outcome of the disease. If Rcq ? 1, the infected fraction of the nodes disappear so the disease die out, while if Rcq > 1, the infected fraction persists and the feasible region is an asymptotic stability region for the endemic equilibrium state. Numerical methods are employed to solve and simulate the system of equations developed. The effect of quarantine on recovered nodes is analyzed. We have also analyzed the behavior of the susceptible, exposed, infected, quarantine, and recovered nodes in the computer network.  相似文献   

4.
The motion of a mobile three-wheel robotic vehicle on a horizontal surface is investigated. Passive rollers are fastened along the rim of each wheel, enabling each wheel not only to roll in the usual manner, but also to move perpendicular to its plane. Each of these wheels, as well as the ordinary wheels, is equipped with one drive, which rotates the wheel about its axis. The vehicle equipped with roller-carrying wheels can move in any direction with any orientation. The motion of the robot on a horizontal surface is studied in the case where the centre of mass of the robot deviates from the geometric centre of the triangular platform, and there is no slip at the points of contact of the rollers with the supporting surface. In the case of free motion of the robot, an additional first integral is pointed out and the exact solution found is analysed. An equation for specifying steady motions, under which a constant voltage is supplied to the DC motors that drive the wheels, is constructed. The stability of the rectilinear motion of the robot is investigated.  相似文献   

5.
An alternative method is presented for solving the eigenvalue problem that governs the stability of Taylor–Couette and Dean flow. The eigenvalue problems defined by the two-point boundary value problems are converted into initial value problems by applying unit disturbance method developed by Harris and Reid [27] in 1964. Thereafter, the initial value problems are solved by differential transform method in series and the eigenvalues are computed by shooting technique. Critical wave number and Taylor number for Taylor–Couette flow are computed for a wide range of rotation ratio (μ), −4 ? μ ? 1 (first mode) and −2 ? μ ? 1 (second mode). The radial eigenfunction and cell patterns are presented for μ = −1, 0, 1. Also, we have computed critical wave number and Dean number successfully.  相似文献   

6.
A multi-phase framework is typically required for the CFD modelling of metals reduction processes. Such processes typically involve the interaction of liquid metals, a gas (often air) top space, liquid droplets in the top space and injection of both solid particles and gaseous bubbles into the bath. The exchange of mass, momentum and energy between the phases is fundamental to these processes. Multi-phase algorithms are complex and can be unreliable in terms of either or both convergence behaviour or in the extent to which the physics is captured. In this contribution, we discuss these multi-phase flow issues and describe an example of each of the main “single phase” approaches to modelling this class of problems (i.e., Eulerian–Lagrangian and Eulerian–Eulerian). Their utility is illustrated in the context of two problems – one involving the injection of sparging gases into a steel continuous slab caster and the other based on the development of a novel process for aluminium electrolysis. In the steel caster, the coupling of the Lagrangian tracking of the gas phase with the continuum enables the simulation of the transient motion of the metal–flux interface. The model of the electrolysis process employs a novel method for the calculation of slip velocities of oxygen bubbles, resulting from the dissolution of alumina, which allows the efficiency of the process to be predicted.  相似文献   

7.
Coherent dynamics of atomic matter waves in a standing-wave laser field is studied. In the dressed-state picture, wave packets of ballistic two-level atoms propagate simultaneously in two optical potentials. The probability to make a transition from one potential to another one is maximal when centroids of wave packets cross the field nodes and is given by a simple formula with the single exponent, the Landau-Zener parameter κ. If κ ? 1, the motion is essentially adiabatic. If κ ? 1, it is (almost) resonant and periodic. If κ ? 1, atom makes nonadiabatic transitions with a splitting of its wave packet at each node and strong complexification of the wave function as compared to the two other cases. This effect is referred as nonadiabatic quantum chaos. Proliferation of wave packets at κ ? 1 is shown to be connected closely with chaotic center-of-mass motion in the semiclassical theory of point-like atoms with positive values of the maximal Lyapunov exponent. The quantum-classical correspondence established is justified by the fact that the Landau-Zener parameter κ specifies the regime of the semiclassical dynamical chaos in the map simulating chaotic center-of-mass motion. Manifestations of nonadiabatic quantum chaos are found in the behavior of the momentum and position probabilities.  相似文献   

8.
Wee and Chung [Wee, H.M., Chung, C.T., 2007. A note on the economic lot size of the integrated vendor–buyer inventory system derived without derivatives. European Journal of Operational Research 177, 1289–1293] use the complete squares method to locate the optimal solution of the integrated system’s total cost TC(QBn). However, their algebra method has shortcomings such that it may be invalid. The main purpose of this paper is to overcome those shortcomings and present complete proofs for Wee and Chung (2007).  相似文献   

9.
10.
In this paper the effects catheterization and non-Newtonian nature of blood in small arteries of diameter less than 100 μm, on velocity, flow resistance and wall shear stress are analyzed mathematically by modeling blood as a Herschel–Bulkley fluid with parameters n and θ and the artery and catheter by coaxial rigid circular cylinders. The influence of the catheter radius and the yield stress of the fluid on the yield plane locations, velocity distributions, flow rate, wall shear stress and frictional resistance are investigated assuming the flow to be steady. It is shown that the velocity decreases as the yield stress increases for given values of other parameters. The frictional resistance as well as the wall shear stress increases with increasing yield stress, whereas the frictional resistance increases and the wall shear stress decreases with increasing catheter radius ratio k (catheter radius to vessel radius). For the range of catheter radius ratio 0.3–0.6, in smaller arteries where blood is modeled by Herschel–Bulkley fluid with yield stress θ = 0.1, the resistance increases by a factor 3.98–21.12 for n = 0.95 and by a factor 4.35–25.09 for n = 1.05. When θ = 0.3, these factors are 7.47–124.6 when n = 0.95 and 8.97–247.76 when n = 1.05.  相似文献   

11.
12.
Le Zhang  Bernd Markert 《PAMM》2016,16(1):251-252
Resilient wheels are well-known for their contribution to prevent squealing, impact noise and dynamic stresses on unsprung masses. In this study, a FE model is established in ABAQUS to analyze the stiffness of resilient wheels based on the Mooney-Rivlin hyperelastic material theory. The modes of each part in the resilient wheel and the whole wheel are calculated. The static and dynamic stiffness of the resilient wheel are analyzed. The simulation shows that the resilient wheel can reduce the dynamic loads both in the lateral and vertical directions between the vehicle and the track. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The steady viscous incompressible and slightly conducting fluid flow around a circular cylinder with an aligned magnetic field is simulated for the range of Reynolds numbers 100 ? Re ? 500 using the Hartmann number, M. The multigrid method with defect correction technique is used to achieve the second order accurate solution of complete non-linear Navier–Stokes equations. The magnetic Reynolds number is assumed to be small. It is observed that volume of the separation bubble decreases and drag coefficient increases as M is increased. We noticed that the upstream base pressure increases slightly with increase of M whereas downstream base pressure decreases with increase of M. The effect of the magnetic field on the flow is discussed with contours of streamlines, vorticity, plots of surface pressure and surface vorticity.  相似文献   

14.
This paper develops a semi-analytic technique for generating smooth nonuniform grids for the numerical solution of singularly perturbed two-point boundary value problems. It is based on the usual idea of mapping a uniform grid to the desired nonuniform grid. We introduce the W-grid, which depends on the perturbation parameter ? ? 1. For problems on [0, 1] with a boundary layer at one end point, the local mesh width hi = xi+1 − xi, with 0 = x0 < x1 < ? < xN = 1, is condensed at either 0 or 1. Two simple 2nd order finite element and finite difference methods are combined with the new mesh, and computational experiments demonstrate the advantages of the smooth W-grid compared to the well-known piecewise uniform Shishkin mesh. For small ?, neither the finite difference method nor the finite element method produces satisfactory results on the Shishkin mesh. By contrast, accuracy is vastly improved on the W-grid, which typically produces the nominal 2nd order behavior in L2, for large as well as small values of N, and over a wide range of values of ?. We conclude that the smoothness of the mesh is of crucial importance to accuracy, efficiency and robustness.  相似文献   

15.
We consider a robust location–allocation problem with uncertainty in demand coefficients. Specifically, for each demand point, only an interval estimate of its demand is known and we consider the problem of determining where to locate a new service when a given fraction of these demand points must be served by the utility. The optimal solution of this problem is determined by the “minimax regret” location, i.e., the point that minimizes the worst-case loss in the objective function that may occur because a decision is made without knowing which state of nature will take place. For the case where the demand points are vertices of a network we show that the robust location–allocation problem can be solved in O(min{pn − p}n3m) time, where n is the number of demand points, p (p < n) is the fixed number of demand points that must be served by the new service and m is the number of edges of the network.  相似文献   

16.
In this paper, spreading speed and traveling waves for reaction–diffusion model with distributed delay and nonlocal effect without monotonicity are investigated. It is shown that there exists the spreading speed c which coincides with the minimal wave speed, and its limiting integral equation has an unique traveling wave with speed c > c, and no traveling wave with c < c. Moreover, the dependence of the spreading speed on the delay and the nonlocal effect is considered.  相似文献   

17.
A delayed stage-structured predator–prey model with non-monotone functional responses is proposed. It is assumed that immature individuals and mature individuals of the predator are divided by a fixed age, and that immature predators do not have the ability to attack prey. Some new and interesting sufficient conditions are obtained for the global existence of multiple positive periodic solutions of the stage-structured predator–prey model. Our method is based on Mawhin’s coincidence degree and novel estimation techniques for the a priori bounds of unknown solutions to Lx = λNx. An example is given to illustrate the feasibility of our main result.  相似文献   

18.
A single fluid model of sheet/cloud cavitation is developed and applied to a NACA0015 hydrofoil. First, a cavity formation model is set up, based on a three-dimensional (3D) non-cavitation model of Navier–Stokes equations with a large eddy simulation (LES) scheme for weakly compressible flows. A fifth-order polynomial curve is adopted to describe the relationship between density coefficient ratio and pressure coefficient when cavitation occurs. The Navier–Stokes equations including cavitation bubble clusters are solved using the finite-volume approach with time-marching scheme, and MacCormack’s explicit-corrector scheme is adopted. Simulations are carried out in a 3D field acting on a hydrofoil NACA0015 at angles of attack 4°, 8° and 20°, with cavitation numbers σ = 1.0, 1.5 and 2.0, Re = 106, and a 360 × 63 × 29 meshing system. We study time-dependent sheet/cloud cavitation structures, caused by the interaction of viscous objects, such as vortices, and cavitation bubbles. At small angles of attack (4°), the sheet cavity is relatively stable just by oscillating in size at the accumulation stage; at 8° it has a tendency to break away from the upper foil section, with the cloud cavitation structure becoming apparent; at 20°, the flow separates fully from the leading edge of the hydrofoil, and the vortex cavitation occurs. Comparisons with other studies, carried out mainly in the context of flow patterns on which prior experiments and simulations were done, demonstrate the power of our model. Overall, it can snapshot the collapse of cloud cavitation, and allow a study of flow patterns and their instabilities, such as “crescent-shaped regions.”  相似文献   

19.
A model for investigating the solute transport into a sub-aqueous sediment bed, under an imposed standing water surface wave, is developed. Under the assumption of Darcy flow in the bed, a model based on a two-dimensional, unsteady advection–diffusion equation is derived; the relative roles of the advective and diffusive transport are characterized by a Peclet number, Pe. Two solutions for the equation are developed. The first is a basic control volume method using the power-law scheme. The second is a smear-free, modified upwind solution for the special case of Pe → ∞. Results, at a given time step, are reported in terms of a laterally averaged solute verse depth profile. The main result of the paper is to demonstrate that the one-dimensional solute concentration verse depth profile is essentially independent of any numerical dissipation present in the solute field predictions. This demonstration is achieved by (i) using an extensive grid refinement study, and (ii) by comparing Pe → ∞ predictions obtained with the basic and smear-free solutions.  相似文献   

20.
In this work, two simple dynamical models are derived for the motion of a three-wheeled car. In the models derived here, the motion of the car is controlled by four torques, three pedalling torques, acting on each of the wheels, and a steering torque acting on the front wheel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号