首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Global dynamics of a discretized SIRS epidemic model with time delay   总被引:1,自引:0,他引:1  
We derive a discretized SIRS epidemic model with time delay by applying a nonstandard finite difference scheme. Sufficient conditions for the global dynamics of the solution are obtained by improvements in discretization and applying proofs for continuous epidemic models. These conditions for our discretized model are the same as for the original continuous model.  相似文献   

2.
In this paper, the dynamical behaviors of a class of discrete-time SIRS epidemic models are discussed. The conditions for the existence and local stability of the disease-free equilibrium and endemic equilibrium are obtained. The numerical simulations not only illustrate the validity of our results, but also exhibit more complex dynamical behaviors, such as flip bifurcation, Hopf bifurcation and chaos phenomenon. These results reveal far richer dynamical behaviors of the discrete epidemic model compared with the continuous epidemic models.  相似文献   

3.
In this paper, we consider the permanence of a discrete SIRS epidemic model with time delays. This model is constructed from the discretization by the Euler method. Applying the technique to prove the existence of an eventual lower bound in a continuous epidemic model, a sufficient condition for the permanence of the above discrete SIRS epidemic model is obtained.  相似文献   

4.
In this article, we establish the global stability of an endemic equilibrium of multi-group SIR epidemic models, which have not only an exchange of individuals between patches through migration but also cross patch infection between different groups. As a result, we partially generalize the recent result in the article [16].  相似文献   

5.
一类带有一般接触率和常数输入的流行病模型的全局分析   总被引:12,自引:1,他引:11  
借助极限系统理论和构造适当的Liapunov函数,对带有一般接触率和常数输入的SIR型和SIRS型传染病模型进行讨论.当无染病者输入时,地方病平衡点存在的阈值被找到A·D2对相应的SIR模型,关于无病平衡点和地方病平衡点的全局渐近稳定性均得到充要条件;对相应的SIRS模型,得到无病平衡点和地方病平衡点全局渐近稳定的充分条件.当有染病者输入时,模型不存在无病平衡点.对相应的SIR模型,地方病平衡点是全局渐近稳定的;对相应的SIRS模型,得到地方病平衡点全局渐近稳定的充分条件.  相似文献   

6.
In this note we introduce the study of the global behaviour of the network-based SIS epidemic model recently proposed by Pastor-Satorras and Vespignani [Epidemic spreading in scale-free networks, Phys. Rev. Lett. 86 (2001) 3200], characterized in case of homogeneous scale-free networks by a very small epidemic threshold, and extended by Olinky and Stone [Unexpected epidemic threshold in heterogeneous networks: the role of disease transmission, Phys. Rev. E 70 (2004) 03902(r)]. We show that the above model may be read as a particular case of the classical multi-group SIS model proposed by Lajmainovitch and Yorke [A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci. 28 (1976) 221] and extended by Aronsson and Mellander [A deterministic model in biomathematics. Asymptotic behaviour and threshold conditions, Math. Biosci. 49 (1980) 207]. Thus, by applying the methods used for SIS multi-group models, we straightforwardly show, for the first time, that the local conditions identified in the physics literature also determine the global behaviour of a disease spreading on a network. Finally, we briefly study the case in which the force of infection is non-linear, by showing that multiple coexisting equilibria are possible, and by giving a global threshold condition for the extinction.  相似文献   

7.
In this paper, by investigating an SIR epidemic model with nonlinear incidence, we present a new technique for proving the global stability of the endemic equilibrium, which consists of introducing a variable transformation and constructing a more general Lyapunov function. For the model we obtain the following results. The disease-free equilibrium is globally stable in the feasible region as the basic reproduction number is less than or equal to unity, and the endemic equilibrium is globally stable in the feasible region as the basic reproduction number is greater than unity.The generality of the technique is illustrated by considering certain nonlinear incidences and SIS and SIRS epidemic models.  相似文献   

8.
In this paper, we study the spreading of infections in complex heterogeneous networks based on an SIRS epidemic model with birth and death rates. We find that the dynamics of the network-based SIRS model is completely determined by a threshold value. If the value is less than or equal to one, then the disease-free equilibrium is globally attractive and the disease dies out. Otherwise, the disease-free equilibrium becomes unstable and in the meantime there exists uniquely an endemic equilibrium which is globally asymptotically stable. A series of numerical experiments are given to illustrate the theoretical results. We also consider the SIRS model in the clustered scale-free networks to examine the effect of network community structure on the epidemic dynamics.  相似文献   

9.
The surveillance, analysis and ultimately the efficient long-term prediction and control of epidemic dynamics appear to be some of the major challenges nowadays. Detailed individual-based mathematical models on complex networks play an important role towards this aim. In this work, it is shown how one can exploit the Equation-Free approach and optimization methods such as Simulated Annealing to bridge detailed individual-based epidemic models with coarse-grained, system-level analysis within a pair-wise representation perspective. The proposed computational methodology provides a systematic approach for analyzing the parametric behavior of complex/multiscale epidemic simulators much more efficiently than simply simulating forward in time. It is shown how steady state and (if required) time-dependent computations, stability computations, as well as continuation and numerical bifurcation analysis can be performed in a straightforward manner. The approach is illustrated through a simple individual-based SIRS epidemic model deploying on a random regular connected graph. Using the individual-based simulator as a black box coarse-grained timestepper and with the aid of Simulated Annealing I compute the coarse-grained equilibrium bifurcation diagram and analyze the stability of the stationary states sidestepping the necessity of obtaining explicit closures at the macroscopic level.  相似文献   

10.
In this article, we consider stochastic susceptible-infected-removed-susceptible (SIRS) epidemic models with saturated incidence rates and delay. We investigate the stochastic stability in probability of the disease-free and endemic equilibria for the stochastic dynamic model with variability in the natural death rate, and the stochastic stability in probability of the endemic equilibrium for the dynamic model when the variability in the environment is proportional to a deviation between the state of the system and the endemic equilibrium. The numerical experiments are provided to support our theoretical results.  相似文献   

11.
In this paper, we investigate the dynamics of a stochastic SIRS epidemic model with saturated incidence. When the noise is small, we obtain a threshold of the stochastic system which determines the extinction and persistence of the epidemic. Besides, we find that large noise will suppress the epidemic from prevailing.  相似文献   

12.
We consider a multi-group microscopic model for pedestrian flow describing the behaviour of large groups. It is based on an interacting particle system coupled to an eikonal equation. Hydrodynamic multi-group models are derived from the underlying particle system as well as scalar multi-group models. The eikonal equation is used to compute optimal paths for the pedestrians. Particle methods are used to solve the equations on all levels of the hierarchy. Numerical test cases are investigated and the models and, in particular, the resulting evacuation times are compared for a wide range of different parameters.  相似文献   

13.
In this paper, we investigate a class of multi-group epidemic models with general exposed distribution and nonlinear incidence rate. Under biologically motivated assumptions, we show that the global dynamics are completely determined by the basic production number $R_0$. The disease-free equilibrium is globally asymptotically stable if $R_0\leq1$, and there exists a unique endemic equilibrium which is globally asymptotically stable if $R_0>1$. The proofs of the main results exploit the persistence theory in dynamical system and a graph-theoretical approach to the method of Lyapunov functionals. A simpler case that assumes an identical natural death rate for all groups and a gamma distribution for exposed distribution is also considered. In addition, two numerical examples are showed to illustrate the results.  相似文献   

14.
We investigate a class of multi-group epidemic models with distributed delays. We establish that the global dynamics are completely determined by the basic reproduction number R0. More specifically, we prove that, if R0?1, then the disease-free equilibrium is globally asymptotically stable; if R0>1, then there exists a unique endemic equilibrium and it is globally asymptotically stable. Our proof of global stability of the endemic equilibrium utilizes a graph-theoretical approach to the method of Lyapunov functionals.  相似文献   

15.
讨论了具有垂直传染且总人口在变化的连续预防接种SIRS传染病模型,给出了基本再生数R_0的表达式,并利用广义Bendixson-Dulac函数方法证明了无病平衡点和地方病平衡点的全局稳定性.  相似文献   

16.
This paper investigates the existence of positive periodic solutions for several types of important biological models with periodic coefficients, including the HIV model with multiple infection stages and general incidence, the epidemic models (such as the SIRS model, the SIRI model, the SEIRS model, etc.) with general incidence. By means of the continuation theorem in the coincidence degree, and the combination of analytical techniques such as constructing appropriate auxiliary functions, we give several classes of explicit sufficient conditions for the existence of positive periodic solutions for these biological models. When these models with periodic coefficients degenerate to the corresponding autonomous cases, our conditions all naturally degenerate to the basic reproduction number is greater than 1. Our results greatly improve and expand the studies in the existing literatures.  相似文献   

17.
This paper deals with global dynamics of an SIRS epidemic model for infections with non permanent acquired immunity. The SIRS model studied here incorporates a preventive vaccination and generalized non-linear incidence rate as well as the disease-related death. Lyapunov functions are used to show that the disease-free equilibrium state is globally asymptotically stable when the basic reproduction number is less than or equal to one, and that there is an endemic equilibrium state which is globally asymptotically stable when it is greater than one.  相似文献   

18.
讨论了具有连续预防接种和脉冲预防接种且具有垂直传染的双线性SIRS传染病模型,分别给出了SIRS传染病模型基本再生数.利用Liapunov函数方法和LaSalle不变原理证明了连续预防接种下无病平衡点和正平衡点的全局稳定性;利用脉冲微分方程的Floquet 乘子理论和比较定理,证明了无病周期解的存在性和全局稳定性.  相似文献   

19.
Based on J. Mena-Lorca and H.W. Hethcote's epidemic model, a SIRS epidemic model with infection-age-dependent infectivity and general nonlinear contact rate is formulated. Under general conditions, the unique existence of its global positive solutions is obtained. Moreover, under more general assumptions than the existing, the existence and asymptotical stability of its equilibria are discussed. In the end, the condition on the stability of endemic equilibrium is verified by a special model.  相似文献   

20.
We discuss the dynamic of a stochastic Susceptible-Infectious-Recovered-Susceptible (SIRS) epidemic model with nonlinear incidence rate.The crucial threshold $\tilde{R}_0$ is identified and this will determine the extinction and persistence of the epidemic when the noise is small. We also discuss the asymptotic behavior of the stochastic model around the endemic equilibrium of the corresponding deterministic system. When the noise is large, we find that a large noise intensity has the effect of suppressing the epidemic, so that it dies out. Finally, these results are illustrated by computer simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号