首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在文[1]的基础上,这篇注记给出了m×m复矩阵A的一类非奇异加边矩阵的特征,得到了利用这种加边矩阵的逆阵的子块求全体(1,2)-逆与Moors—Penrose逆所关联的两个定理。 本文约定:C~(m×n)表示m×n复矩阵的集合,C_r~(m×n)表示C~(m×n)的秩r的矩阵的子集,设A∈C~(m×n),通常把Penrose方程  相似文献   

2.
1 引 言 以C~(m×n)表所有m×n复元素矩阵的全体,对于给定的矩阵A∈C~(m×m),B∈C~(n×n)和C∈C~(m×n),矩阵方程 X-AXB=C (1.1)称为离散李雅普诺夫矩阵方程,它与控制理论有密切的关系。关于这类方程的解法,  相似文献   

3.
广义极分解   总被引:9,自引:2,他引:7  
孙继广  陈春晖 《计算数学》1989,11(3):262-273
本文使用下列符号:C~(m×n)表示m×n复矩阵的集合,C_r~(m×n)表示秩为r的m×n复矩阵的集合,A~H和A~+分别表示矩阵A的共轭转置和Moore-Penrose广义逆,|| ||_2表示向量的Euclid范数和矩阵的谱范数,|| ||_F表示Frobenius范数,R(A)表示A的列  相似文献   

4.
矩阵反问题解的稳定性   总被引:1,自引:0,他引:1  
孙继广 《计算数学》1986,8(3):251-257
首先说明一些记号.C~(m×n):所有m×n复元素矩阵的全体,C_r~(m×n):C~(m×n)中所有秩为r的矩阵的全体.A~H:矩阵A的转置共轭.I~((n)):n行列单位矩阵.A>0表示A是正定Hermite矩阵,λ_(max)(A)与λ_(min)(A)分别表示Hermite矩阵A的最大与最小特征值,σ_(max)(A)与σ_(min)(A)分别表示矩阵A的最大与最小奇异值.A~+:A的Moors-Penrose广义逆.|| ||_2:矩阵的谱范数,|| ||_F:矩阵的Frobenius范数.  相似文献   

5.
加权Moore-Penrose逆的扰动理论   总被引:5,自引:0,他引:5  
§1.引言设A∈C~(m×n),M和N分别为m和n阶Hermite正定阵,则存在唯一的K∈C~(n×m),满足AXA=A,XAX=X,(MAX)=MAX,(NXA)=NXA.这里X称为A的加权Moore-Penrose逆,记作X=A_(MN)~+. 当M和N分别为m和n阶单位阵I_m和I_m时,A_(Im)~+=A~+,A~+称为A的Moors-Penrose逆,当A为非异方阵时,A~+=A~(-1).  相似文献   

6.
线性流形上Hermite-广义反Hamilton矩阵反问题的最小二乘解   总被引:8,自引:0,他引:8  
张忠志  胡锡炎  张磊 《计算数学》2003,25(2):209-218
1.引言 令Rn×m表示所有n×m实矩阵集合,Cn×m表示所有n×m复矩阵集合,Cn=Cn×1,HCn×n表示所有n阶Hermite矩阵集合,UCn×n表示所有n阶酉矩阵集合,AHCn×n表示所有n阶反Hermite矩阵集合,R(A)表示A的列空间,N(A)表示A的零空间,A+表示A的Moore—Penrose广义逆,A*B表示A与B的Hadamard积,rank(A)表示矩阵A的秩.tr(A)表示矩阵A的迹.矩阵A,B的内积定义为(A,B)=tr(BHA),A,B∈Cn×m,由此内积诱导的范数为||A||=√(A,A)=[tr(AHA)]1/2,则此范数为Frobenius范数,并且Cn×m构成一个完备的内积空间,In表示n阶单位阵,i=√-1,记OASRn×n表示n×n阶正交反对称矩阵的全体,即  相似文献   

7.
证明了如何选取矩阵X,Y和Z使得下面的分块矩阵(AXYZ)取得它的极大秩和极小秩,这里A∈C~(m×n)是一个已知矩阵,X∈C~(m×k),Y∈C~(p×n)和Z∈C~(p×k)是三个任意矩阵.  相似文献   

8.
实对称带状矩阵特征值反问题   总被引:1,自引:1,他引:0  
戴华 《计算数学》1988,10(1):107-111
用R~(n×m)表示所有n×m实矩阵的集合;OR~(n×n)表示所有n×n正交矩阵的集合;S_(n,r)表示所有带宽为2r+1的n阶实对称矩阵的集合;||·||_F表示矩阵的Frobenius范数,||·||表示向量的Euclid范数.任取A∈R~(n×m),满足AA~-A=A 的A~-∈R~(m×n)叫做A的内逆,满足AA_l~-A=A和(AA_l~-)~T=AA_l~-的A_l~-∈R~(m×n)叫做A的最小二乘广义逆,  相似文献   

9.
目前,广义逆在最优化中得到越来越多的应用,广义逆成了研究最优化的一个重要和有效的工具.最优化中的许多问题可以利用广义逆给出清晰、本质的表示.最优化中的病态问题(包括奇异性问题),可以通过考虑广义逆矩阵得到解决.本文按照作者的观点综述了广义逆矩阵在最优化各个领域中的应用.在本文中,我们用 R~m(C~m)表示 m 维向量空间,R~(m×n)(C~(m×n)表示 m×n 矩阵的  相似文献   

10.
<正>1引言记冗R~(m×n)为m×n阶实数矩阵集合;A~T表示矩阵A的转置;I_p表示p×p阶单位矩阵.对任意矩阵A=(a_(ij))∈R~(m×n),[A]_(ij)表示A的第ij个元素,即[A]_(ij)=a_(ij);‖A‖_F表示矩阵A的Frobenius范数,且有关系‖A‖_F~2=tr(A~TA),(1.1)其中tr(·)表示矩阵的迹,且有性质tr(A+B)=tr(A)+tr(B),tr(AB)=tr(BA),tr(B~T)=tr(B).(1.2)本文研究如下Stiefel流形上的极小化问题:  相似文献   

11.
任意体上矩阵的ρMoore-Penrose逆的某些显式   总被引:4,自引:1,他引:3  
设K是一个任意的体,表示K上所有矩阵的集合,K~(m×n)表示K上m×n矩阵的集合,K_r~(m×n)={A∈K~(m×n)|RankA=r}.推广[1]中的概念,我们引入定义1.设的一个变换,如果满足 (i)(AB)~ρ=B~ρA~ρ,A∈K~(m×n),B∈K~(?); (ii)(A~ρ)~ρ=A,A∈, 那么ρ叫做的一个对合函数. 定义2.设ρ是的一个对合函数,A∈K~(m×n),如果存在X∈K~(n×m),满足下面关于ρ的Penrose方程:  相似文献   

12.
QR分解与非线性特征值问题   总被引:1,自引:2,他引:1  
李仁仓 《计算数学》1989,11(4):374-385
考察m×n矩阵A(λ),其中元素a_(ij)(λ)均为复(实)变量λ的解析(至少有一阶导数)函数.称此类矩阵为泛函λ-矩阵。特别,当a_(ij)(λ)是λ的多项式时,A(λ)就是熟知的λ-矩阵.给定A(λ)∈C~(n×n)(m=n),有时需确定其非线性特征值及其相应的特征向量,即求满足  相似文献   

13.
1 引言 设Rn×m为所有n×m实矩阵的集合,ASRn×n为n阶实反对称矩阵的集合,ORn×n 为n阶实正交矩阵的全体. In是n阶单位矩阵,A+,R(A),N(A)分别表示矩阵A的 Moore-Penrose广义逆、值域及零空间,并记EA=I-AA+,FA=I-A+A(I为单位矩 阵,A为任意矩阵).对A=(aij),B=(bij)∈Rn×m,A*B=(aijbij)表示矩阵A与B 的Hadamard积.在Rn×m上定义矩阵A与B的内积为(A,B)=tr(BT A),则由此内积 导出的范数‖A‖=(A,A)~(1/2)是矩阵的Frobenius范数,并且Rn×m构成一个完备的内积 空间.  相似文献   

14.
正1引言设C~(m×n)表示m×n阶复矩阵的集合,I_n表示n阶单位矩阵.对于矩阵A∈C~(m×n),A~*表示它的共轭转置矩阵.设矩阵A∈C~(n×n),如果A~2=A,则称矩阵A为幂等矩阵;如果A~2=A=A~*,则称矩阵A为正交投影矩阵.设A∈C~(n×n)本文主要研究下面的二次矩阵方程AXA=XAX,(1.1)称之为Yang-Baxter-like方程,因为其与统计物理中分别由Yang[1]和Baxter[2]独立得到的经典Yang-Baxter方程相似.  相似文献   

15.
矩阵方程ATXB+BTXTA=D的极小范数最小二乘解   总被引:1,自引:0,他引:1  
1引言本文用Rm×n表示所有m×n实矩阵全体,ORn×n,ASRn×n分别表示n×n实正交矩阵类与反对称矩阵类.‖·‖F表示矩阵的Frobenius范数,A+为矩阵A的Moore-Penrose广义逆,A*B与A(?)B分别表示矩阵4与B的Hadamard乘积及Kronecker乘积,即若A=(aij),B=(bij),则A*B=(ajibij),A(?)B=(aijB),vec4表示矩阵A的按行拉直,即若A=[aT1,aT2,…,aTm],其中ai为A的行向量,则vecA=(a1a2…am)T.设A∈Rn×m,B∈Rp×m,D∈Rm×m,我们考虑不相容线性矩阵方程ATXB+BTXTA=D(1.1)  相似文献   

16.
孙继广 《计算数学》1988,10(4):438-443
§1.引言 首先说明几个符号.R~(m×n)是所有m×n实矩阵的全体,R_r~(m×n)是R~(m×n)中秩为r的矩阵的全体,R~n=R~(n×1);A~T是矩阵A的转置,I~((n))是n×n单位矩阵,O是零矩阵;λ(Λ)是矩阵A的特征值的全体,|| ||_2是向量的欧氏范数和矩阵的谱范数,|| ||_F是矩阵的Frobenius范数; N(·)表示零空间.  相似文献   

17.
给定正整数 m,n,r,s(1≤m≤r,1≤n≤s),A=(α_(ij))是 r×s 周期二元方阵.如果每个非零 m×n(二元)矩阵都是 A 的一个 m×n 子方阵,A 便叫做一个(r,s;m,n)-m 阵列.如果每个 m×n(二元)矩阵都是 A 的一个 m×n 子方阵,A 便叫做一个(r,s;m,n)-M 阵列.这分别是极大长度序列(或称 m-序列)及 de Bruijn 序列(或称 M-序列)的二维推广.本文讨论 m 阵列与 M 阵列的构作方法,以及它们的性质和存在性问题.  相似文献   

18.
钟家庆 《数学学报》1981,24(6):931-944
<正> 在紧致Kahler流形中,最重要和最典型的是Grassmann流形.Grassmann流形G(m+n,n)由C~(m+n)中全体n维超平面组成,它可以实现为G(m+n,n)={是m×(m+n)矩阵,rank3=m  相似文献   

19.
矩阵特征值的几个扰动定理   总被引:1,自引:1,他引:0  
1 引言 设A∈C~(n×m),B∈C~(m×m)(m≤n),它们的特征值分别为{λ_k}_(k=1)~n和{μ_k}_(k=1)~m.令 R=AQ-QB (1)这里Q∈C~(n×m)为列满秩矩阵.Kahan研究了矩阵A在C~(n×m)上的Rayleigh商的性质,证明了下列定理:设A为Hermite矩阵,Q为列正交矩阵,即Q~HQ=I,而B=Q~HAQ,则存在 1,2,… ,n的某个排列π,使得 {sum from j=1 to m │μ_j-λ_(π(j))│~2}~(1/2)≤2~(1/2)‖R‖_F (2)其中R如(1)所示,‖·‖_F为矩阵的Frobenius范数.刘新国在[2]中将此定理推广到B为可对角化矩阵的情形,并且还建立了较为一般的扰动定理:设A为正规矩阵,B为可对角化矩阵;存在非奇异矩阵G,使得G~(-1)BG为对角阵,则存在1,2,…,n的某个排列π,使得 │μ_j-λ_(π(j))│≤2(2~(1/2))nK(G)_(σ_m~(-1))‖R‖_F,j=1,2,…,m. (3)  相似文献   

20.
矩阵方程AXB+CYD=E对称最小范数最小二乘解的极小残差法   总被引:1,自引:0,他引:1  
<正>1引言本文用R~(n×m)表示全体n×m实矩阵集合,用SR~(n×n)表示全体n×n实对称矩阵集合,OR~(n×n)表示全体n×n实正交矩阵集合.用I_n表示n阶单位矩阵,用A*B表示矩阵A与B的Hadamard乘积.对任意矩阵A,B∈R~(n×m),定义内积〈A,B〉=tr(B~T A),其中  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号